[R-sig-ME] increasing nAGQ causes error
Ben Bolker
bolker at ufl.edu
Fri May 29 18:11:44 CEST 2009
This sounds worth digging into, but it's hard to dig
into without a reproducible example. I don't get the
problem with the GLMM example in the lme4 package:
example(lmer)
update(gm1,nAGQ=8)
update(gm1,nAGQ=10)
etc.
Can you post your data set, or a subset or simulated
data set that gives the same problem, somewhere?
Ben Bolker
Grant T. Stokke wrote:
> Hello All,
>
> I'm new to R and new to this mailing list, so I hope I've presented
> the proper info in this post. I'm using GLMMs to model the selection
> of urban roosting locations by crows. My dataset consists of 22
> cities, with each city containing 1000 unused locations and from 83
> to 2000 used locations. I have three covariates for each used or
> unused location which I've standardized across all observations: %
> canopy (CANS), % impervious surfaces (IMPS), and nighttime light
> level (LTS). Using the default setting nAGQ=1, my full model is
> fitted without error:
>
>> CIL_CIL<-glmer(USED~1+CANS+IMPS+LTS+(1+CANS+IMPS+LTS|CITY),family=binomial,data=sitescale)
>> CIL_CIL
> Generalized linear mixed model fit by the Laplace approximation
> Formula: USED ~ 1 + CANS + IMPS + LTS + (1 + CANS + IMPS + LTS |
> CITY) Data: sitescale AIC BIC logLik deviance 15122 15237 -7547
> 15094 Random effects: Groups Name Variance Std.Dev. Corr
> CITY (Intercept) 321.698184 17.93595 CANS 0.073271
> 0.27069 0.026 IMPS 0.661947 0.81360 0.080 -0.698 LTS
> 455.829122 21.35016 -0.988 0.031 -0.132 Number of obs: 27128,
> groups: CITY, 22
>
> Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept)
> -16.21878 4.01227 -4.042 5.29e-05 *** CANS 0.07881
> 0.07162 1.100 0.271147 IMPS 0.63137 0.17750 3.557
> 0.000375 *** LTS 19.50827 4.78822 4.074 4.62e-05 ***
> --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> Correlation of Fixed Effects: (Intr) CANS IMPS CANS 0.020
> IMPS 0.074 -0.500 LTS -0.989 0.025 -0.124
>
> When I increase nAGQ to 8, however, I get the following error:
>
>> CIL_CIL.nAGQ8<-glmer(USED~1+CANS+IMPS+LTS+(1+CANS+IMPS+LTS|CITY),family=binomial,data=sitescale,nAGQ=8)
>> CIL_CIL.nAGQ8
> Error in asMethod(object) : matrix is not symmetric [1,2]
>
> I get the same error message with other values for nAGQ (I tried nAGQ
> = 2, 3, 5, and 50). Is there anything I can do to fit the model
> using nAGQ > 1 without error? Thanks in advance for your help!
>
> -Grant Stokke
>
>
>> sessionInfo()
> R version 2.9.0 (2009-04-17) i386-pc-mingw32
>
> locale: LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
> States.1252;LC_MONETARY=English_United
> States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
>
> attached base packages: [1] stats graphics grDevices utils
> datasets methods base
>
> other attached packages: [1] mgcv_1.5-5 lme4_0.999375-30
> Matrix_0.999375-26 lattice_0.17-22
>
> loaded via a namespace (and not attached): [1] grid_2.9.0
> nlme_3.1-90 tools_2.9.0
>> CIL_CIL.nAGQ8
> Error in asMethod(object) : matrix is not symmetric [1,2]
>> traceback()
> 18: .Call(dense_to_symmetric, from, "U", TRUE) 17: asMethod(object)
> 16: as(from, "symmetricMatrix") 15: .class1(object) 14: as(as(from,
> "symmetricMatrix"), "dMatrix") 13: .class1(object) 12: as(as(as(from,
> "symmetricMatrix"), "dMatrix"), "denseMatrix") 11: .class1(object)
> 10: as(as(as(as(from, "symmetricMatrix"), "dMatrix"), "denseMatrix"),
> "dpoMatrix") 9: asMethod(object) 8: as(sigma(object)^2 *
> chol2inv(object at RX, size = object at dims["p"]), "dpoMatrix") 7:
> vcov(object) 6: vcov(object) 5: summary(x) 4: summary(x) 3:
> printMer(object) 2: function (object) standardGeneric("show")(<S4
> object of class "mer">) 1: function (object)
> standardGeneric("show")(<S4 object of class "mer">)
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
--
Ben Bolker
Associate professor, Biology Dep't, Univ. of Florida
bolker at ufl.edu / www.zoology.ufl.edu/bolker
GPG key: www.zoology.ufl.edu/bolker/benbolker-publickey.asc
More information about the R-sig-mixed-models
mailing list