[R-sig-ME] Duplicating meta-regression results from PROC MIXED with lmer
Viechtbauer Wolfgang (STAT)
Wolfgang.Viechtbauer at STAT.unimaas.nl
Fri May 8 10:53:30 CEST 2009
I now had a chance to run these models myself.
Here are the data that I used (study is a factor and the first column is the # of TB cases and the second the # of non-TB cases).
group ablati syear study
[1,] 4 119 1 44 48 1
[2,] 6 300 1 55 49 2
[3,] 3 228 1 42 60 3
[4,] 62 13536 1 52 77 4
[5,] 33 5036 1 13 73 5
[6,] 180 1361 1 44 53 6
[7,] 8 2537 1 19 73 7
[8,] 505 87886 1 13 80 8
[9,] 29 7470 1 27 68 9
[10,] 17 1699 1 42 61 10
[11,] 186 50448 1 18 74 11
[12,] 5 2493 1 33 69 12
[13,] 27 16886 1 33 76 13
[14,] 11 128 0 44 48 1
[15,] 29 274 0 55 49 2
[16,] 11 209 0 42 60 3
[17,] 248 12619 0 52 77 4
[18,] 47 5761 0 13 73 5
[19,] 372 1079 0 44 53 6
[20,] 10 619 0 19 73 7
[21,] 499 87892 0 13 80 8
[22,] 45 7232 0 27 68 9
[23,] 65 1600 0 42 61 10
[24,] 141 27197 0 18 74 11
[25,] 3 2338 0 33 69 12
[26,] 29 17825 0 33 76 13
If you want results that are essentially those from the paper, you should use:
lmer(y ~ group + ablati:group + syear:group + study + (group - 1| study), family=binomial)
The estimate of tau^2 is then essentially zero and:
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.426859 0.269031 -9.021 < 2e-16 ***
group 0.548365 0.493131 1.112 0.26613
study2 0.131173 0.320457 0.409 0.68230
...
study13 -3.716989 0.301366 -12.334 < 2e-16 ***
group:ablati -0.034185 0.003948 -8.659 < 2e-16 ***
group:syear -0.001770 0.005753 -0.308 0.75838
This matches up quite nicely with the results from the "usual" approach.
An alternative would be to add study as a random instead of a fixed effect. Then the main effects for absolute latitude and study year can also be added to the model:
lmer(y ~ group + ablati + ablati:group + syear + syear:group + (group | study), family=binomial)
Then the estimate of tau^2 is 0.00045553, still pretty much zero, and:
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.699707 2.386607 0.712 0.47635
group 0.514024 0.497863 1.032 0.30186
ablati 0.024016 0.021007 1.143 0.25294
syear -0.099948 0.027955 -3.575 0.00035 ***
group:ablati -0.034332 0.003991 -8.601 < 2e-16 ***
group:syear -0.001488 0.005811 -0.256 0.79787
which is still quite close.
Best,
--
Wolfgang Viechtbauer
Department of Methodology and Statistics
University of Maastricht, The Netherlands
http://www.wvbauer.com/
More information about the R-sig-mixed-models
mailing list