[R-sig-ME] Error message in lmer

Douglas Bates bates at stat.wisc.edu
Mon Apr 20 21:27:56 CEST 2009


I forgot to attach the figure to my last message.

On Mon, Apr 20, 2009 at 2:25 PM, Douglas Bates <bates at stat.wisc.edu> wrote:
> I would go about things in a different way than is described in that book.
>
> This is an example of what happens when the data are organized with
> "implicitly nested" factors.  My recollection of the data is that
> there are 6 rats and 3 liver sections from each rat, creating a total
> of 18 liver sections in which the glycogen was measured.  It may have
> made sense in the past to designate the rats as 1 and 2 with the
> implicit assumption that rat 1 in treatment 1 is different from rat 1
> in treatment 2 or rat 1 in treatment 3 but I don't think this is a
> need any more for that potentially confusing designation.
>
> If instead you think of the three treatments as a factor that we will
> model with fixed effects paramaters and the 6 rats and 18 liver
> sections as defining random effects then the analysis is
> straightforward.
>
>> rats <- read.delim("/home/bates/Desktop/rats.txt")
>> str(rats)
> 'data.frame':   36 obs. of  4 variables:
>  $ Glycogen : int  131 130 131 125 136 142 150 148 140 143 ...
>  $ Treatment: int  1 1 1 1 1 1 1 1 1 1 ...
>  $ Rat      : int  1 1 1 1 1 1 2 2 2 2 ...
>  $ Liver    : int  1 1 2 2 3 3 1 1 2 2 ...
>> rats$Treatment <- factor(rats$Treatment, labels = LETTERS[1:3])
>> rats$rr <- with(rats, Treatment:factor(Rat))
>> rats$ll <- with(rats, Treatment:factor(Rat):factor(Liver))
>> str(rats)
> 'data.frame':   36 obs. of  6 variables:
>  $ Glycogen : int  131 130 131 125 136 142 150 148 140 143 ...
>  $ Treatment: Factor w/ 3 levels "A","B","C": 1 1 1 1 1 1 1 1 1 1 ...
>  $ Rat      : int  1 1 1 1 1 1 2 2 2 2 ...
>  $ Liver    : int  1 1 2 2 3 3 1 1 2 2 ...
>  $ rr       : Factor w/ 6 levels "A:1","A:2","B:1",..: 1 1 1 1 1 1 2 2 2 2 ...
>  $ ll       : Factor w/ 18 levels "A:1:1","A:1:2",..: 1 1 2 2 3 3 4 4 5 5 ...
>> rats
>   Glycogen Treatment Rat Liver  rr    ll
> 1       131         A   1     1 A:1 A:1:1
> 2       130         A   1     1 A:1 A:1:1
> 3       131         A   1     2 A:1 A:1:2
> 4       125         A   1     2 A:1 A:1:2
> 5       136         A   1     3 A:1 A:1:3
> 6       142         A   1     3 A:1 A:1:3
> 7       150         A   2     1 A:2 A:2:1
> 8       148         A   2     1 A:2 A:2:1
> 9       140         A   2     2 A:2 A:2:2
> 10      143         A   2     2 A:2 A:2:2
> 11      160         A   2     3 A:2 A:2:3
> 12      150         A   2     3 A:2 A:2:3
> 13      157         B   1     1 B:1 B:1:1
> 14      145         B   1     1 B:1 B:1:1
> 15      154         B   1     2 B:1 B:1:2
> 16      142         B   1     2 B:1 B:1:2
> 17      147         B   1     3 B:1 B:1:3
> 18      153         B   1     3 B:1 B:1:3
> 19      151         B   2     1 B:2 B:2:1
> 20      155         B   2     1 B:2 B:2:1
> 21      147         B   2     2 B:2 B:2:2
> 22      147         B   2     2 B:2 B:2:2
> 23      162         B   2     3 B:2 B:2:3
> 24      152         B   2     3 B:2 B:2:3
> 25      134         C   1     1 C:1 C:1:1
> 26      125         C   1     1 C:1 C:1:1
> 27      138         C   1     2 C:1 C:1:2
> 28      138         C   1     2 C:1 C:1:2
> 29      135         C   1     3 C:1 C:1:3
> 30      136         C   1     3 C:1 C:1:3
> 31      138         C   2     1 C:2 C:2:1
> 32      140         C   2     1 C:2 C:2:1
> 33      139         C   2     2 C:2 C:2:2
> 34      138         C   2     2 C:2 C:2:2
> 35      134         C   2     3 C:2 C:2:3
> 36      127         C   2     3 C:2 C:2:3
>> library(lme4)
> Loading required package: Matrix
>
> Attaching package: 'Matrix'
>
>
>        The following object(s) are masked from package:stats :
>
>         xtabs
>
>
>        The following object(s) are masked from package:base :
>
>         rcond
>
>> (fm1 <- lmer(Glycogen ~ Treatment + (1|rr) + (1|ll), rats))
> Linear mixed model fit by REML
> Formula: Glycogen ~ Treatment + (1 | rr) + (1 | ll)
>   Data: rats
>   AIC   BIC logLik deviance REMLdev
>  231.6 241.1 -109.8    234.3   219.6
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  ll       (Intercept) 14.167   3.7639
>  rr       (Intercept) 36.065   6.0054
>  Residual             21.167   4.6007
> Number of obs: 36, groups: ll, 18; rr, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)  140.500      4.707  29.851
> TreatmentB    10.500      6.656   1.577
> TreatmentC    -5.333      6.656  -0.801
>
> Correlation of Fixed Effects:
>           (Intr) TrtmnB
> TreatmentB -0.707
> TreatmentC -0.707  0.500
>
> Also, if you look at the enclosed plot you will see that the main
> reason for not having a significant difference due to treatment is
> because the two rats who got treatment A had very different levels of
> glycogen.  Furthermore there is considerable section to section
> variability within rat and even assay to assay variability within the
> same section (look at rat B:1's data).
>
> On Thu, Apr 16, 2009 at 7:40 PM, Luciano La Sala
> <lucianolasala at yahoo.com.ar> wrote:
>>
>> Dear people,
>>
>> I am doing some exercises from The R Book by Crawley. When trying to fit a mixed model for the “Rat” data (page 649 on this book), after loading the data and specifying the model I get the following error messages:
>>
>> model <- lmer(Glycogen~Treatment+(1|Treatment/Rat/Liver)
>>
>> Error: Matrices must have same number of columns in rbind2(..1, r)
>> In addition: Warning messages:
>> 1: In Rat:Treatment :
>>  numerical expression has 36 elements: only the first used
>> 2: In Rat:Treatment :
>>  numerical expression has 36 elements: only the first used
>> 3: In Liver:(Rat:Treatment) :
>>  numerical expression has 36 elements: only the first used
>> 4: In Rat:Treatment :
>>  numerical expression has 36 elements: only the first used
>> 5: In Rat:Treatment :
>>  numerical expression has 36 elements: only the first used
>>
>> What's all this mean? Any tips as to where I may be going wrong?
>>
>> Thank you in advance!
>>
>> Luciano
>>
>>
>>
>>
>>
>>      Yahoo! Cocina
>> Recetas prácticas y comida saludable
>> http://ar.mujer.yahoo.com/cocina/
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: rats.pdf
Type: application/pdf
Size: 10479 bytes
Desc: not available
URL: <https://stat.ethz.ch/pipermail/r-sig-mixed-models/attachments/20090420/c3227d10/attachment.pdf>


More information about the R-sig-mixed-models mailing list