[R-sig-ME] marginality principle for mixed effects models

Douglas Bates bates at stat.wisc.edu
Mon Apr 6 20:51:47 CEST 2009


A minor technical point.  It is not a good idea to have the lme4 and
nlme packages attached at the same time.  They both define generic
functions fixef, ranef, etc. and these definitions conflict.

There is a package called MEMSS that provides the data sets from nlme
without conflicts.

On Fri, Apr 3, 2009 at 9:17 PM, Steven McKinney <smckinney at bccrc.ca> wrote:
>
>
> Dear list,
>
> I'm working on mapping all my old-school fixed effects linear
> modeling teachings into the fabulous new(er) mixed effects world.
>
> I've been looking at the "Oats" data used in the nlme library.
> Here's a set of commands that build successively richer models,
> and tests to evaluate differences due to variety.
>
> library("nlme")
> library("lme4")
> plot(Oats, inner = TRUE)
> print(om1 <- lmer(yield ~ nitro + (1 | Block), data = Oats))
> print(om2 <- lmer(yield ~ nitro + Variety + (1 | Block), data = Oats))
> print(om3 <- lmer(yield ~ nitro + (1 | Block/Variety), data = Oats))
> print(om4 <- lmer(yield ~ nitro + Variety + (1 | Block/Variety), data = Oats))
>
> anova(om4, om3) ## Does this violate the principle of marginality? (Testing main effect in presence of interaction?)
> anova(om4, om2) ## Would this be the first test of variety?
> anova(om4, om1) ## Would this not be the omnibus test for variety?
> anova(om2, om1)
>
> If I wanted to assess the effect of variety, it seems to me
> the first test I'd want to look at is model om4 versus model om2.
> This it seems to me would be in the spirit of testing an interaction
> term with both main effects in the model in the old fixed effects
> world.
>
> An omnibus test of the importance of variety would seem to me
> to be model om4 versus om1.
>
> Testing om4 versus om3 seems to me to violate the marginality
> principle (testing a main effect in the presence of an interaction
> involving that main effect).  Or is there something different in
> the mixed effects world - does this marginality principle hold
> for this scenario?  The plots and all the other tests seem to
> strongly suggest that there are important differences due to variety,
> but this test suggests otherwise.  This test does not seem
> appropriate.
>
> Any comments?  Is this paradigm mapping reasonable?
>
>
>
>> library("nlme")
>> library("lme4")
>
>> plot(Oats, inner = TRUE) # Lattice plot of data
>
>> print(om1 <- lmer(yield ~ nitro + (1 | Block), data = Oats))
> Linear mixed-effects model fit by REML
> Formula: yield ~ nitro + (1 | Block)
>   Data: Oats
>   AIC   BIC logLik MLdeviance REMLdeviance
>  610.7 617.5 -302.4      616.4        604.7
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  Block    (Intercept) 243.34   15.599
>  Residual             254.99   15.968
> number of obs: 72, groups: Block, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)   81.872      7.104  11.524
> nitro         73.667      8.416   8.753
>
> Correlation of Fixed Effects:
>      (Intr)
> nitro -0.355
>
>
>> print(om2 <- lmer(yield ~ nitro + Variety + (1 | Block), data = Oats))
> Linear mixed-effects model fit by REML
> Formula: yield ~ nitro + Variety + (1 | Block)
>   Data: Oats
>   AIC BIC logLik MLdeviance REMLdeviance
>  601.6 613 -295.8      608.8        591.6
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  Block    (Intercept) 245.03   15.653
>  Residual             234.73   15.321
> number of obs: 72, groups: Block, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)   81.872      7.069  11.582
> nitro         73.667      8.075   9.123
> Variety1       2.646      2.211   1.196
> Variety2      -3.174      1.277  -2.486
>
> Correlation of Fixed Effects:
>         (Intr) nitro  Varty1
> nitro    -0.343
> Variety1  0.000  0.000
> Variety2  0.000  0.000  0.000
>
>
>> print(om3 <- lmer(yield ~ nitro + (1 | Block/Variety), data = Oats))
> Linear mixed-effects model fit by REML
> Formula: yield ~ nitro + (1 | Block/Variety)
>   Data: Oats
>  AIC   BIC logLik MLdeviance REMLdeviance
>  601 610.1 -296.5      604.3          593
> Random effects:
>  Groups        Name        Variance Std.Dev.
>  Variety:Block (Intercept) 121.33   11.015
>  Block         (Intercept) 210.28   14.501
>  Residual                  165.51   12.865
> number of obs: 72, groups: Variety:Block, 18; Block, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)   81.872      6.944   11.79
> nitro         73.667      6.781   10.86
>
> Correlation of Fixed Effects:
>      (Intr)
> nitro -0.293
>
>
>> print(om4 <- lmer(yield ~ nitro + Variety + (1 | Block/Variety), data = Oats))
> Linear mixed-effects model fit by REML
> Formula: yield ~ nitro + Variety + (1 | Block/Variety)
>   Data: Oats
>   AIC   BIC logLik MLdeviance REMLdeviance
>  594.5 608.1 -291.2      601.3        582.5
> Random effects:
>  Groups        Name        Variance Std.Dev.
>  Variety:Block (Intercept) 108.94   10.437
>  Block         (Intercept) 214.57   14.648
>  Residual                  165.55   12.867
> number of obs: 72, groups: Variety:Block, 18; Block, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)   81.872      6.946  11.786
> nitro         73.667      6.781  10.863
> Variety1       2.646      3.539   0.748
> Variety2      -3.174      2.043  -1.553
>
> Correlation of Fixed Effects:
>         (Intr) nitro  Varty1
> nitro    -0.293
> Variety1  0.000  0.000
> Variety2  0.000  0.000  0.000
>>
>
>
>
>
>
>> anova(om4, om3) ## Does this violate the principle of marginality? (Testing main effect in presence of interaction?)
> Data: Oats
> Models:
> om3: yield ~ nitro + (1 | Block/Variety)
> om4: yield ~ nitro + Variety + (1 | Block/Variety)
>    Df     AIC     BIC  logLik  Chisq Chi Df Pr(>Chisq)
> om3  4  612.30  621.41 -302.15
> om4  6  613.28  626.94 -300.64 3.0197      2     0.2209
>
>
>> anova(om4, om2) ## Would this be the first test for effect of variety?
> Data: Oats
> Models:
> om2: yield ~ nitro + Variety + (1 | Block)
> om4: yield ~ nitro + Variety + (1 | Block/Variety)
>    Df     AIC     BIC  logLik  Chisq Chi Df Pr(>Chisq)
> om2  5  618.85  630.23 -304.42
> om4  6  613.28  626.94 -300.64 7.5629      1   0.005958 **
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>> anova(om4, om1) ## Would this not be the omnibus test for variety?
> Data: Oats
> Models:
> om1: yield ~ nitro + (1 | Block)
> om4: yield ~ nitro + Variety + (1 | Block/Variety)
>    Df     AIC     BIC  logLik  Chisq Chi Df Pr(>Chisq)
> om1  3  622.40  629.23 -308.20
> om4  6  613.28  626.94 -300.64 15.114      3   0.001722 **
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>> anova(om2, om1)
> Data: Oats
> Models:
> om1: yield ~ nitro + (1 | Block)
> om2: yield ~ nitro + Variety + (1 | Block)
>    Df     AIC     BIC  logLik  Chisq Chi Df Pr(>Chisq)
> om1  3  622.40  629.23 -308.20
> om2  5  618.85  630.23 -304.42 7.5512      2    0.02292 *
> ---
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>>
>
>
>
> Steven McKinney, Ph.D.
>
> Statistician
> Molecular Oncology and Breast Cancer Program
> British Columbia Cancer Research Centre
>
> email: smckinney +at+ bccrc +dot+ ca
>
> tel: 604-675-8000 x7561
>
> BCCRC
> Molecular Oncology
> 675 West 10th Ave, Floor 4
> Vancouver B.C.
> V5Z 1L3
> Canada
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>




More information about the R-sig-mixed-models mailing list