[R-sig-ME] Desperately seeking help with simple lmer fit (lmer vs Proc Mixed)

Douglas Bates bates at stat.wisc.edu
Wed Feb 18 20:56:56 CET 2009


Thanks for the example.

The estimates of the variance components are the result of an
optimization and it appears that there are two local optima for this
problem.  I'm sorry to say that the optimum determined by SAS PROC
MIXED represents a better fit (a lower deviance) than the one
determined by lmer.

If you plot the response versus run, say

dotplot(reorder(Run, Y) ~ Y)

you will see that there is one run (number 13) with unusually large Y,
which may have abnormal influence.  I was able to reproduce the SAS
results by modifying the starting estimates.  This is not optimal
because it means you need to know the correct answer before you can
calculate it.

> (fm1 <- lmer(Y ~ (1|Run) + (1|Prep), pr, verbose = TRUE))
  0:     1536.6629: 0.666667 0.384900
  1:     1441.4487:  1.44044  1.01837
  2:     1421.4662:  2.35838 0.621655
  3:     1408.1762:  3.27848 0.229969
  4:     1401.9874:  4.04888  0.00000
  5:     1399.8678:  4.59188  0.00000
  6:     1398.9477:  5.12145  0.00000
  7:     1398.7722:  5.41633  0.00000
  8:     1398.7543:  5.53332  0.00000
  9:     1398.7539:  5.55421  0.00000
 10:     1398.7539:  5.55527 1.68436e-07
 11:     1398.7539:  5.55527 1.68436e-07
Linear mixed model fit by REML
Formula: Y ~ (1 | Run) + (1 | Prep)
   Data: pr
  AIC  BIC logLik deviance REMLdev
 1407 1417 -699.4     1410    1399
Random effects:
 Groups   Name        Variance   Std.Dev.
 Run      (Intercept) 3.5859e+05 5.9882e+02
 Prep     (Intercept) 3.2965e-10 1.8156e-05
 Residual             1.1619e+04 1.0779e+02
Number of obs: 108, groups: Run, 18; Prep, 6

Fixed effects:
            Estimate Std. Error t value
(Intercept)  28216.5      141.5   199.4
> (fm1a <- lmer(Y ~ (1|Run) + (1|Prep), pr, verbose = TRUE, start = c(4,4)))
  0:     1393.6144:  4.00000  4.00000
  1:     1393.5078:  3.74366  4.09884
  2:     1393.4819:  3.72800  4.32664
  3:     1393.4810:  3.73535  4.37362
  4:     1393.4810:  3.73373  4.37885
  5:     1393.4810:  3.73404  4.37877
  6:     1393.4810:  3.73404  4.37875
  7:     1393.4810:  3.73404  4.37875
Linear mixed model fit by REML
Formula: Y ~ (1 | Run) + (1 | Prep)
   Data: pr
  AIC  BIC logLik deviance REMLdev
 1401 1412 -696.7     1406    1393
Random effects:
 Groups   Name        Variance Std.Dev.
 Run      (Intercept) 162010   402.50
 Prep     (Intercept) 222784   472.00
 Residual              11619   107.79
Number of obs: 108, groups: Run, 18; Prep, 6

Fixed effects:
            Estimate Std. Error t value
(Intercept)    28216        215   131.2

If you remove Run 13 you do get results like those from SAS using lmer

> (fm2 <- lmer(Y ~ (1|Run) + (1|Prep), pr, verbose = TRUE, subset = Run != 13))
  0:     1426.8110: 0.666667 0.396059
  1:     1342.0591:  1.47666 0.982502
  2:     1325.5670:  2.35364 0.501989
  3:     1311.1286:  3.60322  0.00000
  4:     1309.3047:  3.96698  0.00000
  5:     1307.8040:  4.56388 1.65053e-05
  6:     1307.5200:  4.88366 6.39529e-05
  7:     1307.4763:  5.04660 0.000170199
  8:     1307.4746:  5.08457 0.000341660
  9:     1307.4745:  5.08786 0.000627531
 10:     1307.4745:  5.08806 0.00113168
 11:     1307.4743:  5.09250 0.0198356
 12:     1306.7915:  5.55085  2.00076
 13:     1306.7202:  5.57778  2.29410
 14:     1304.5962:  3.26016  2.72067
 15:     1304.1219:  3.90630  4.98691
 16:     1303.9334:  3.70822  4.85924
 17:     1303.7839:  3.39994  4.44476
 18:     1303.7039:  3.78966  4.10571
 19:     1303.6539:  3.50693  3.67340
 20:     1303.6333:  3.63992  3.74762
 21:     1303.6285:  3.55042  3.87085
 22:     1303.6259:  3.59760  3.87143
 23:     1303.6258:  3.59381  3.86414
 24:     1303.6258:  3.59257  3.86456
 25:     1303.6258:  3.59308  3.86577
 26:     1303.6258:  3.59318  3.86504
 27:     1303.6258:  3.59312  3.86514
Linear mixed model fit by REML
Formula: Y ~ (1 | Run) + (1 | Prep)
   Data: pr
 Subset: Run != 13
  AIC  BIC logLik deviance REMLdev
 1312 1322 -651.8     1316    1304
Random effects:
 Groups   Name        Variance Std.Dev.
 Run      (Intercept) 135857   368.59
 Prep     (Intercept) 157206   396.49
 Residual              10523   102.58
Number of obs: 102, groups: Run, 17; Prep, 6

Fixed effects:
            Estimate Std. Error t value
(Intercept)  28161.8      185.5   151.8


This example may be motivation for me to try out a modification in the
optimization method that I have been contemplating.


On Wed, Feb 18, 2009 at 12:41 PM, David LeBlond
<David.LeBlond at abbott.com> wrote:
>
> Dear Dr. Bates,
>
> First, apologies for this request ....  however I am desperate. I have spent
> 3 days on this. I must have a very fundamental misunderstanding of lmer or
> factors or grouped data or syntax or something else.
>
> To show due diligence, I have read all I can find on lmer syntax, gone
> through the SASmixed Package including the "lmer for SAS PROC MIXED Users",
> other presentations from yourself and others on lmer. I have visited the
> blogs.  In the last 24h on this problem I have tried every permutation I can
> think of.
>
> The experiment is a simple balanced 3 level nested variance component study
> virtually identical to Example 4.4, page 156 of Little et al, SAS System for
> Mixed Models. There are 3 variables: There are 6 Y results nested within
> each of 18 runs. There are 3 runs nested within each of 6 preps. Site is
> ignored.
>
> I am using the lmer code analagous to what you used to analyze Example 4.4
> in lmer:
>
>         lmer syntax:         lmer(Y~1+(1|Prep/Run))
>         MIXED syntax:         proc mixed;class run prep site; model
> y=/s;random prep run(prep);run;
>
> The error variance components and fixed effect estimates agree, but the
> variance components for Prep and Run are completely different.
>
> Source                lmer                SAS
> Run                   358580                162010
> Prep                 0.012776        222784
>
> For a nearly identical problem, (Semi2 in SASmixed) lmer and MIXED give
> identical results. As I can repeat the SAS result in JMP, I trust it. I
> believe I am making some error in my use of lmer. I need to complete the
> analysis in lmer, not SAS or JMP.
>
> Can you or someone please explain to me why the variance component estimates
> are so radically different between MIXED and lmer? I know I am making some
> dumb mistake and I am prepared to be humbled.
>
> Thank you so much!!
>
> Dave
> ***************************************************************
> PS - Below I am sending my lmer data (a dif file), code and output along
> with the SAS data (in code), code and output.
>
>
> Here is the Excel data needed for R:
>
>
> Below is the R code which also contains the outputs and SAS data and code
> (sorry for length - 108 lines of data).
>
> library(lattice)
> library(foreign)
> library(lme4)
> Suitability<-read.DIF("C:/Documents and Settings/leblodj/Desktop/Synthroid
> Dissolution Method Change Lynn Davis Feb09/Suitability.dif",
>                header=TRUE,transpose=TRUE,nrows=369,colClasses="character")
>
> str(Suitability)
> Y<-as.numeric(Suitability$Y)
> Site<-ordered(Suitability$Site)
> Prep<-ordered(Suitability$Prep)
> Run<-ordered(Suitability$Run)
> levels(Run)
> levels(Prep)
> lmer(Y~1+(1|Prep/Run))
>
> ####### lmer output #################
> #Linear mixed model fit by REML
> #Formula: Y ~ 1 + (1 | Prep/Run)
> #  AIC  BIC logLik deviance REMLdev
> # 1407 1417 -699.4     1410    1399
> #Random effects:
> # Groups   Name        Variance   Std.Dev.
> # Run:Prep (Intercept) 3.5858e+05 598.81878
> # Prep     (Intercept) 1.2776e-02   0.11303
> # Residual             1.1619e+04 107.79332
> #Number of obs: 108, groups: Run:Prep, 18; Prep, 6
> #
> #Fixed effects:
> #            Estimate Std. Error t value
> #(Intercept)  28216.5      141.5   199.4
> #######################################
>
>
>
> #############################################
>
>
> ##### SAS Proc Mixed Output (matches JMP)  ##
> ##### See full SAS code Below  ##############
> # Covariance Parameter
> #      Estimates
> #
> #Cov Parm      Estimate
> #
> #Prep            222784
> #Run(Prep)       162010
> #Residual         11619
>                    Solution for Fixed Effects
>                          Standard
> Effect       Estimate       Error      DF    t Value    Pr > |t|
> Intercept       28216      215.03       5     131.22      <.0001
> ############################################
> ###### SAS Proc Mixed Code  ##########
> data Suitability;
> input Site$        Prep$        Run$        Y;
> cards;
> 2        1        1        28325
> 2        1        1        28314
> 2        1        1        28277
> 2        1        1        28183
> 2        1        1        28423
> 2        1        1        28299
> 2        1        2        27578
> 2        1        2        27724
> 2        1        2        27541
> 2        1        2        27686
> 2        1        2        27679
> 2        1        2        27567
> 2        1        3        27207
> 2        1        3        27351
> 2        1        3        27416
> 2        1        3        27292
> 2        1        3        27168
> 2        1        3        27117
> 2        2        4        28036
> 2        2        4        28042
> 2        2        4        27902
> 2        2        4        28110
> 2        2        4        27794
> 2        2        4        28181
> 2        2        5        28018
> 2        2        5        28318
> 2        2        5        28170
> 2        2        5        28410
> 2        2        5        28444
> 2        2        5        28620
> 2        2        6        27764
> 2        2        6        28008
> 2        2        6        27849
> 2        2        6        28096
> 2        2        6        27788
> 2        2        6        27884
> 2        3        7        28201
> 2        3        7        28224
> 2        3        7        28206
> 2        3        7        28462
> 2        3        7        28290
> 2        3        7        28303
> 2        3        8        28244
> 2        3        8        28125
> 2        3        8        28078
> 2        3        8        28023
> 2        3        8        28037
> 2        3        8        28014
> 2        3        9        28738
> 2        3        9        28726
> 2        3        9        28765
> 2        3        9        28534
> 2        3        9        28518
> 2        3        9        28489
> 1        4        10        28717
> 1        4        10        28622
> 1        4        10        28790
> 1        4        10        28697
> 1        4        10        28531
> 1        4        10        28502
> 1        4        11        28478
> 1        4        11        28425
> 1        4        11        28609
> 1        4        11        28541
> 1        4        11        28518
> 1        4        11        28492
> 1        4        12        28808
> 1        4        12        28764
> 1        4        12        28745
> 1        4        12        28786
> 1        4        12        28773
> 1        4        12        28622
> 1        5        13        29405
> 1        5        13        29372
> 1        5        13        29435
> 1        5        13        29831
> 1        5        13        29550
> 1        5        13        29402
> 1        5        14        28708
> 1        5        14        28684
> 1        5        14        28772
> 1        5        14        28705
> 1        5        14        28749
> 1        5        14        28754
> 1        5        15        28559
> 1        5        15        28584
> 1        5        15        28636
> 1        5        15        28713
> 1        5        15        28652
> 1        5        15        28530
> 1        6        16        26991
> 1        6        16        27009
> 1        6        16        26949
> 1        6        16        26957
> 1        6        16        26965
> 1        6        16        26934
> 1        6        17        28174
> 1        6        17        28074
> 1        6        17        28113
> 1        6        17        28154
> 1        6        17        28200
> 1        6        17        27952
> 1        6        18        27628
> 1        6        18        27569
> 1        6        18        27624
> 1        6        18        27737
> 1        6        18        27675
> 1        6        18        27654
> ;
>
> proc mixed;
>   class run prep site;
>   model y=/s;
>   random prep run(prep);run;
>
>
> ________________________________
> David LeBlond
> Senior Research Statistician
> MS Statistics, MS/PhD Biochemistry
> Exploratory Statistics Global Pharmaceutical R&D
> 100 Abbott Park Road
> Abbott Park, IL 60064-3500
> USA R13-1 847-935-6031
> AP9A-1 847-935-1899
> David.LeBlond at abbott.com
>
> ________________________________
> This communication may contain information that is proprietary,
> confidential, or exempt from disclosure. If you are not the intended
> recipient, please note that any other dissemination, distribution, use or
> copying of this communication is strictly prohibited. Anyone who receives
> this message in error should notify the sender immediately by telephone or
> by return e-mail and delete it from his or her computer.
>




More information about the R-sig-mixed-models mailing list