[R-sig-ME] lmer for a binary dependent variable
Andrew Beckerman
a.beckerman at sheffield.ac.uk
Fri Jan 30 10:29:52 CET 2009
Lillian -
There is a lengthy, satisfying, but ultimately frustration discussion
of this issues starting with this link and the thread therein.....
https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q1/001787.html
Look in the archives under the teaching mixed models OR anything to do
with mcmc sampling and glmm's
You might also look at Ben Bokers recent paper, and a new package
called MCMCglmm by Jarrod Hadfield.
<http://dx.doi.org/10.1016/j.tree.2008.10.008>
Andrew
---------------------------------------------------------------------------------
Dr. Andrew Beckerman
Department of Animal and Plant Sciences, University of Sheffield,
Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
ph +44 (0)114 222 0026; fx +44 (0)114 222 0002
http://www.beckslab.staff.shef.ac.uk/
http://www.flickr.com/photos/apbeckerman/
http://www.warblefly.co.uk
----------------------------------------------------------------------------------
On 29 Jan 2009, at 14:39, Liliana Martinez wrote:
> Hi,
>
> I am trying to use the lmer function from the lme4 package in R
> 2.8.0. to fit a generalized mixed-effects model for a dependent
> variable with a binomial distribution (for more info on my
> experiment, look below). However, I encounter a major problem: How
> is it possible to find the general test statistic and see the
> relative importance of the predictors? The methods which I found
> described in Baayen (2008). Analyzing Linguistic Data: A Practical
> Introduction to Statistics Using Ror on the net did not work out.
> Here is what I got:
>
>> prec0_va2.lmer
> Generalized linear mixed model fit by the Laplace approximation
> Formula: prec_0 ~ (verb + agent)^2 + (1 | subject)
> Data: risuvane1_binom_tolmer
> AIC BIC logLik deviance
> 559.7 590.5 -272.8 545.7
> Random effects:
> Groups Name Variance Std.Dev.
> subject (Intercept) 1.9975 1.4133
> Number of obs: 600, groups: subject, 30
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 3.3120 0.5757 5.753 8.75e-09 ***
> verbzaobikaliam -4.2031 0.5530 -7.601 2.94e-14 ***
> verbzavivam -4.2508 0.5113 -8.313 < 2e-16 ***
> agentveh -2.7286 0.7219 -3.780 0.000157 ***
> verbzaobikaliam:agentveh 1.0255 0.7440 1.378 0.168058
> verbzavivam:agentveh 1.9629 0.6217 3.158 0.001591 **
> ---
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Correlation of Fixed Effects:
> (Intr) vrbzbk vrbzvv agntvh vrbzb:
> verbzaobklm -0.644
> verbzavivam -0.697 0.760
> agentveh -0.797 0.513 0.556
> vrbzbklm:gn 0.479 -0.743 -0.565 -0.491
> vrbzvvm:gnt 0.573 -0.625 -0.823 -0.584 0.620
>
>> pvals.fnc(prec0_va2.lmer)
> Error in pvals.fnc(prec0_va2.lmer) :
> mcmc sampling is not yet implemented for generalized mixed models
>
>> mcmcsamp(prec0_va2.lmer, n=500)
> Error in .local(object, n, verbose, ...) : Update not yet written
>
> Can anyone suggest a solution to this problem?
>
>
> best regards
>
> Liliana
>
>
> _________________________________________________________
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list