[R-sig-ME] lme4 vs. HLM (program) - differences in estimation?

Felix Schönbrodt nicebread at gmx.net
Tue Nov 18 20:30:07 CET 2008


Thanks for your fast reply,

your right, I missed that in my explanation: Raudenbush et al. enter  
the socioeconomic status (ses) group centered into their model.
Therefore I calculated that group centered variable and called it  
ses.gmc (gmc = group mean centered; [I just recognize that this notion  
is ambiguous to "grand mean centered...])

# group-centering of ses (as R&B do ...)
# ses.gm = group mean
# ses.gmc = ses [group mean centered]

gMeans <- aggregate(HSB$ses, list(HSB$id), mean)
names(gMeans) <- c("id", "ses.gm")
HSB <- merge(HSB, gMeans, by="id")
HSB$ses.gmc <- HSB$ses - HSB$ses.gm

HSB.ML <- lmer(mathach ~ meanses + sector + ses.gmc + meanses*ses.gmc  
+ sector*ses.gmc + (ses.gmc|id), data=HSB)

I think despite that, we have the same dataset.
I used lme4_0.999375-27.

Felix




Am 18.11.2008 um 19:54 schrieb Doran, Harold:

> Felix
>
> I think I can help a bit. I need to know what ses.gmc is. I have  
> those data and have run the following model:
>
> lmer(mathach ~ meanses * ses + sector * ses + (ses | id), hsb)
>
> My output below shows the data (your and mine) have the same number  
> of obs. But, the original data distributed with HLM does not have a  
> variable called ses.gmc. The only variables in the data are:
>
>> str(hsb)
> 'data.frame':   7185 obs. of  11 variables:
> $ id      : Factor w/ 160 levels "1224","1288",..: 1 1 1 1 1 1 1 1 1  
> 1 ...
> $ minority: num  0 0 0 0 0 0 0 0 0 0 ...
> $ female  : num  1 1 0 0 0 0 1 0 1 0 ...
> $ ses     : num  -1.528 -0.588 -0.528 -0.668 -0.158 ...
> $ mathach : num   5.88 19.71 20.35  8.78 17.90 ...
> $ size    : num  842 842 842 842 842 842 842 842 842 842 ...
> $ sector  : num  0 0 0 0 0 0 0 0 0 0 ...
> $ pracad  : num  0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 ...
> $ disclim : num  1.60 1.60 1.60 1.60 1.60 ...
> $ himinty : num  0 0 0 0 0 0 0 0 0 0 ...
> $ meanses : num  -0.428 -0.428 -0.428 -0.428 -0.428 -0.428 -0.428  
> -0.428 -0.428 -0.428 ...
>
> Also you should report what version of lme4 you are using. Do a  
> sessionInfo() and this will appear.
>
>> lmer(mathach ~ meanses * ses + sector * ses + (ses | id), hsb)
> Linear mixed model fit by REML
> Formula: mathach ~ meanses * ses + sector * ses + (ses | id)
>   Data: hsb
>   AIC   BIC logLik deviance REMLdev
> 46525 46594 -23253    46498   46505
> Random effects:
> Groups   Name        Variance Std.Dev. Corr
> id       (Intercept)  2.40744 1.55159
>          ses          0.01462 0.12091  1.000
> Residual             36.75838 6.06287
> Number of obs: 7185, groups: id, 160
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)  12.0948     0.2028   59.65
> meanses       3.3202     0.3885    8.55
> ses           2.9052     0.1483   19.59
> sector        1.1949     0.3079    3.88
> meanses:ses   0.8462     0.2718    3.11
> ses:sector   -1.5781     0.2245   -7.03
>
> Correlation of Fixed Effects:
>            (Intr) meanss ses    sector mnss:s
> meanses      0.213
> ses          0.076 -0.146
> sector      -0.676 -0.344 -0.064
> meanses:ses -0.143  0.178  0.278 -0.081
> ses:sector  -0.062 -0.080 -0.679  0.093 -0.356
>
>> -----Original Message-----
>> From: r-sig-mixed-models-bounces at r-project.org
>> [mailto:r-sig-mixed-models-bounces at r-project.org] On Behalf
>> Of Felix Schönbrodt
>> Sent: Tuesday, November 18, 2008 12:02 PM
>> To: r-sig-mixed-models at r-project.org
>> Subject: [R-sig-ME] lme4 vs. HLM (program) - differences in
>> estimation?
>>
>> Hi all,
>>
>> in my workgroup the HLM program by Raudenbush et al. is the
>> de facto standard - however, I'd like to do my mixed models
>> in R using the lme4 package (as I do all other computations
>> in R as well...)
>>
>> Both as a practice and as an argument for my colleagues I
>> tried to replicate (amongst others) the omnipresent
>> "math-achievement-in- catholic-vs.-public schools"-example
>> (using the original HLM-data set) in lme4.
>>
>> My first question is: is my formula in lmer the right one?
>>
>> --> HLM-style model ( Y = MATHACH; ID = grouping factor)
>>
>> Level-1 Model
>>
>> 	Y = B0 + B1*(SES) + R
>>
>> Level-2 Model
>> 	B0 = G00 + G01*(SECTOR) + G02*(MEANSES) + U0
>> 	B1 = G10 + G11*(SECTOR) + G12*(MEANSES) + U1
>>
>> Combined Model:
>> 	
>> 	Y = G00 + G01*(SECTOR) + G02*(MEANSES) + G11*(SECTOR)*(SES) +
>> G12*(MEANSES)*(SES) + U0 + U1*(SES) + R
>>
>> --> lmer-style:
>>
>> 	HSB.ML <- lmer(mathach ~ sector + meanses + ses +
>> meanses*ses + sector*ses + (ses.gmc | id), data=HSB)
>>
>>
>>
>> All models yield the same results concerning fixed effects;
>> models including random slopes however show some minor
>> divergence in the random effects variance (not very much, but
>> it is there ...; see sample outputs below). In the presented
>> example, the variance component is 0.10 (lme4) vs. 0.15 (HLM).
>> I am aware that these differences are really small - in this
>> case the difference was only 0.1% of the residual variance.
>>
>> Nonetheless I would really be happy if someone could shed
>> some light on this issue, so that I can go to my colleagues
>> and say: "We get slightly different results _because_ [...],
>> BUT this is not a problem, _because_ ..."
>>
>>
>> From my web and literature searches I have two guesses about
>> these differences in both programs:
>>
>> - a statement by Douglas Bates, that lme4 uses another estimation
>> algorithm:
>> "[...] but may be of interest to some who are familiar with a
>> generalized least squares (GLS) representation of
>> mixed-models (such as used in MLWin and HLM). The lme4
>> package uses a penalized least squares (PLS) representation instead."
>> (http://markmail.org/search/?q=lme4+PLS+GLS#query:lme4%20PLS%20GLS
>> +page:1+mid:hb6p6mk6sztkvii2+state:results)
>>
>> - HLM maybe does some Bayesian Estimation, what lme4 does not do (?)
>>
>> But: these only are guesses from my side ... I'm not a
>> statistician, but would like to understand it (a bit)
>>
>> All best,
>> Felix
>>
>>
>> #-----------------------------------
>> # OUTPUT FROM HLM
>> # ------------------------------------
>>
>>  Final estimation of fixed effects:
>>
>> --------------------------------------------------------------
>> --------------
>>                                        Standard             Approx.
>>     Fixed Effect         Coefficient   Error      T-ratio
>> d.f.
>> P-value
>>
>> --------------------------------------------------------------
>> --------------
>>  For       INTRCPT1, B0
>>     INTRCPT2, G00          12.096006   0.198734    60.865
>> 157    0.000
>>       SECTOR, G01           1.226384   0.306271     4.004
>> 157    0.000
>>      MEANSES, G02           5.333056   0.369161    14.446
>> 157    0.000
>>  For      SES slope, B1
>>     INTRCPT2, G10           2.937980   0.157140    18.697
>> 157    0.000
>>       SECTOR, G11          -1.640951   0.242912    -6.755
>> 157    0.000
>>      MEANSES, G12           1.034418   0.302574     3.419
>> 157    0.001
>>
>> --------------------------------------------------------------
>> --------------
>>
>>
>>  Final estimation of variance components:
>>
>> --------------------------------------------------------------
>> ---------------
>>  Random Effect           Standard      Variance     df
>> Chi-square
>> P-value
>>                          Deviation     Component
>>
>> --------------------------------------------------------------
>> ---------------
>>  INTRCPT1,       U0        1.54271       2.37996   157
>> 605.29563    0.000
>>       SES slope, U1        0.38603       0.14902   157
>> 162.30883    0.369
>>   level-1,       R         6.05831      36.70309
>>
>> --------------------------------------------------------------
>> ---------------
>>
>>
>>
>> #-----------------------------------
>> # OUTPUT FROM LMER
>> #---------------------------------------
>>
>> Linear mixed model fit by REML
>> Formula: mathach ~ meanses + sector + ses.gmc + meanses * ses.gmc +
>> sector *      ses.gmc + (ses.gmc | id)
>>    Data: HSB
>>    AIC   BIC logLik deviance REMLdev
>>  46524 46592 -23252    46496   46504
>>
>> Random effects:
>>  Groups   Name        Variance Std.Dev. Corr
>>  id       (Intercept)  2.379   1.543
>>           ses.gmc      0.101   0.318    0.391
>>  Residual             36.721   6.060
>> Number of obs: 7185, groups: id, 160
>>
>> Fixed effects:
>>                 Estimate Std. Error t value
>> (Intercept)     12.09600    0.19873  60.866
>> meanses          5.33291    0.36916  14.446
>> sector           1.22645    0.30627   4.005
>> ses.gmc          2.93877    0.15509  18.949
>> meanses:ses.gmc  1.03890    0.29889   3.476
>> sector:ses.gmc  -1.64261    0.23978  -6.850
>>
>>
>> ___________________________________
>> Dipl. Psych. Felix Schönbrodt
>> Department of Psychology
>> Ludwig-Maximilian-Universität (LMU) Munich Leopoldstr. 13
>> D-80802 München
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>




More information about the R-sig-mixed-models mailing list