[R-sig-ME] Different versions of lme4 and covariance of randomeffects

Doran, Harold HDoran at air.org
Fri Aug 8 17:54:07 CEST 2008


Well, I don't get this problem. Using your code, I get the same exact
output from 2.6.2 and 2.7.1. My sessionInfo shows that I have the same
packages as you in 2.7.1, but in 2.6.2 you have an older version of
Matrix. My output showing the same estimates from both R versions is
pasted below.

## output from 2.7.1
> summary(fm.het.3)
Linear mixed model fit by REML 
Formula: dv ~ time.num * drug - 1 + (0 + Dind + Pind | Patient.cross) 
   Data: dat.new 
 AIC   BIC logLik deviance REMLdev
 705 729.7 -344.5    687.6     689
Random effects:
 Groups        Name Variance Std.Dev. Corr  
 Patient.cross Dind 29.3378  5.4164         
               Pind  4.8857  2.2104   0.169 
 Residual            1.9651  1.4018         
Number of obs: 160, groups: Patient.cross, 20

Fixed effects:
               Estimate Std. Error t value
time.num         0.8175     0.1402   5.832
drugD           -0.8505     1.2705  -0.669
drugP            5.9720     0.6258   9.543
time.num:drugP  -1.1262     0.1982  -5.681

Correlation of Fixed Effects:
            tim.nm drugD  drugP 
drugD       -0.276              
drugP        0.000  0.127       
tim.nm:drgP -0.707  0.195 -0.396
> sessionInfo()
R version 2.7.1 (2008-06-23) 
i386-pc-mingw32 

locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
States.1252;LC_MONETARY=English_United
States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base


other attached packages:
[1] lme4_0.999375-24   Matrix_0.999375-11 lattice_0.17-13   

loaded via a namespace (and not attached):
[1] grid_2.7.1  tools_2.7.1 

### Output from 2.6.2
> summary(fm.het.3)
Linear mixed-effects model fit by REML 
Formula: dv ~ time.num * drug - 1 + (0 + Dind + Pind | Patient.cross) 
   Data: dat.new 
 AIC   BIC logLik MLdeviance REMLdeviance
 703 724.6 -344.5      687.6          689
Random effects:
 Groups        Name Variance Std.Dev. Corr  
 Patient.cross Dind 29.3339  5.4161         
               Pind  4.8854  2.2103   0.169 
 Residual            1.9651  1.4018         
number of obs: 160, groups: Patient.cross, 20

Fixed effects:
               Estimate Std. Error t value
time.num         0.8175     0.1402   5.832
drugD           -0.8505     1.2705  -0.669
drugP            5.9720     0.6258   9.543
time.num:drugP  -1.1262     0.1982  -5.681

Correlation of Fixed Effects:
            tim.nm drugD  drugP 
drugD       -0.276              
drugP        0.000  0.127       
tim.nm:drgP -0.707  0.195 -0.396
> sessionInfo()
R version 2.6.2 (2008-02-08) 
i386-pc-mingw32 

locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
States.1252;LC_MONETARY=English_United
States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base


other attached packages:
[1] lme4_0.99875-9    Matrix_0.999375-7 lattice_0.17-4   

loaded via a namespace (and not attached):
[1] grid_2.6.2


> -----Original Message-----
> From: David Afshartous [mailto:dafshartous at med.miami.edu] 
> Sent: Friday, August 08, 2008 11:40 AM
> To: Doran, Harold; r-sig-mixed-models at r-project.org
> Subject: Re: [R-sig-ME] Different versions of lme4 and 
> covariance of randomeffects
> 
> 
> Donald,
> 
> Sorry, you're right, for the reproducible example I was 
> mainly focusing on the correlation term but when I look 
> closer there are other differences as well.  And yes, the 
> same data was used, generated via the code below with same 
> seed at set.seed(500).
> 
> Cheers,
> David
> 
> 
> 
> 
> On 8/8/08 11:30 AM, "Doran, Harold" <HDoran at air.org> wrote:
> 
> > David:
> > 
> > I'm looking at this and am a little confused. You say the 
> differences 
> > are not too dramatic. But, they are. I can see that the syntax for 
> > your model specification is the same, but the estimates of the fit 
> > statistics differ (logLik), the estimates of the fixed 
> effects differ, 
> > as well as their standard errors, and the variance 
> components differ.
> > 
> > Am I missing something? Was the same data set used in both cases?
> > 
> >> -----Original Message-----
> >> From: r-sig-mixed-models-bounces at r-project.org
> >> [mailto:r-sig-mixed-models-bounces at r-project.org] On 
> Behalf Of David 
> >> Afshartous
> >> Sent: Friday, August 08, 2008 11:06 AM
> >> To: r-sig-mixed-models at r-project.org
> >> Subject: [R-sig-ME] Different versions of lme4 and covariance of 
> >> randomeffects
> >> 
> >> 
> >> 
> >> All,
> >> 
> >> I recently re-estimated a model after upgrading to Rv2.7.1 
> that had 
> >> been estimated Rv2.6.2 previously and was surprised to see the 
> >> estimated correlation between random effects in the model 
> change from 
> >> 0.3 to 1.0.
> >> It appears that the reason has more to do with the version of
> >> lme4 since when I download the latest possible lme4 to
> >> Rv2.6.2 the results agree.
> >> 
> >> Below is a reproducible example where the difference in results is 
> >> not as dramatic.  Of course, for my data the initial 
> results with the 
> >> correlation of .3 seem a lot more plausible than that of 
> 1.0 so I'm 
> >> inclined to trust those results more than the newer ones.  
> It seems 
> >> strange to get the correlation of 1.
> >> 
> >> 
> >> Cheers,
> >> David
> >> 
> >> library("lme4")
> >> set.seed(500)
> >> n.timepoints <- 4  ## change for shorter examples 
> n.subj.per.tx <- 20 
> >> sd.d <- 5; sd.p <- 2; sd.res <- 1.3 drug
> >> <- factor(rep(c("D", "P"), each = n.timepoints, times =
> >> n.subj.per.tx))
> >> drug.baseline <- rep( c(0,5), each=n.timepoints, 
> times=n.subj.per.tx 
> >> ) Patient <- rep(1:(n.subj.per.tx*2), each = n.timepoints) 
> >> Patient.baseline <- rep( rnorm( n.subj.per.tx*2, 
> sd=c(sd.d, sd.p) ), 
> >> each=n.timepoints ) time
> >> <- factor(paste("Time-", rep(1:n.timepoints, n.subj.per.tx*2),
> >> sep=""))
> >> time.baseline <-
> >> rep(1:n.timepoints,n.subj.per.tx*2)*as.numeric(drug=="D")
> >> dv <- rnorm( n.subj.per.tx*n.timepoints*2, 
> >> mean=time.baseline+Patient.baseline+drug.baseline, sd=sd.res
> >> ) dat.new <- data.frame(time, drug, dv, Patient) 
> >> dat.new$Patient.cross <- rep(1:(n.subj.per.tx), each = 
> >> 2*n.timepoints)
> >> 
> >> 
> >> dat.new$Dind <- as.numeric(dat.new$drug == "D") dat.new$Pind
> >> <- as.numeric(dat.new$drug == "P") dat.new$time.num = 
> >> rep(1:n.timepoints, n.subj.per.tx*2)
> >> 
> >> ##################################################################
> >> 
> >>> sessionInfo()
> >> R version 2.6.2 (2008-02-08)
> >> i386-pc-mingw32
> >> 
> >> locale:
> >> LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
> >> States.1252;LC_MONETARY=English_United
> >> States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
> >> 
> >> attached base packages:
> >> [1] stats     graphics  grDevices utils     datasets  
> methods   base
> >> 
> >> other attached packages:
> >> [1] lme4_0.99875-9    Matrix_0.999375-5 lattice_0.17-4
> >> 
> >> loaded via a namespace (and not attached):
> >> [1] grid_2.6.2
> >>> ( fm.het.3 <- lmer( dv ~  time.num*drug  -1 + ( 0 + Dind  + Pind |
> >> Patient.cross ), data=dat.new ) )
> >> Linear mixed-effects model fit by REML
> >> Formula: dv ~ time.num * drug - 1 + (0 + Dind + Pind | 
> Patient.cross)
> >>    Data: dat.new
> >>    AIC   BIC logLik MLdeviance REMLdeviance
> >>  684.7 706.3 -335.4      669.2        670.7
> >> Random effects:
> >>  Groups        Name Variance Std.Dev. Corr
> >>  Patient.cross Dind 26.8380  5.1805
> >>                Pind  7.7623  2.7861   0.060
> >>  Residual            1.5906  1.2612
> >> number of obs: 160, groups: Patient.cross, 20
> >> 
> >> Fixed effects:
> >>                Estimate Std. Error t value
> >> time.num         0.9101     0.1261   7.216
> >> drugD           -0.2637     1.2088  -0.218
> >> drugP            5.0330     0.7123   7.066
> >> time.num:drugP  -0.9476     0.1784  -5.313
> >> 
> >> Correlation of Fixed Effects:
> >>             tim.nm drugD  drugP
> >> drugD       -0.261
> >> drugP        0.000  0.050
> >> tim.nm:drgP -0.707  0.184 -0.313
> >>> 
> >> 
> >> 
> #####################################################################
> >> 
> >>> sessionInfo()
> >> R version 2.7.1 (2008-06-23)
> >> i386-pc-mingw32
> >> 
> >> locale:
> >> LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
> >> States.1252;LC_MONETARY=English_United
> >> States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
> >> 
> >> attached base packages:
> >> [1] stats     graphics  grDevices utils     datasets  
> methods   base
> >> 
> >> other attached packages:
> >> [1] lme4_0.999375-24   Matrix_0.999375-11 lattice_0.17-8
> >> 
> >> loaded via a namespace (and not attached):
> >> [1] grid_2.7.1
> >>> ( fm.het.3 <- lmer( dv ~  time.num*drug  -1 + ( 0 + Dind  + Pind |
> >> Patient.cross ), data=dat.new ) )
> >> Linear mixed model fit by REML
> >> Formula: dv ~ time.num * drug - 1 + (0 + Dind + Pind | 
> Patient.cross)
> >>    Data: dat.new
> >>  AIC   BIC logLik deviance REMLdev
> >>  705 729.7 -344.5    687.6     689
> >> Random effects:
> >>  Groups        Name Variance Std.Dev. Corr
> >>  Patient.cross Dind 29.3378  5.4164
> >>                Pind  4.8857  2.2104   0.169
> >>  Residual            1.9651  1.4018
> >> Number of obs: 160, groups: Patient.cross, 20
> >> 
> >> Fixed effects:
> >>                Estimate Std. Error t value
> >> time.num         0.8175     0.1402   5.832
> >> drugD           -0.8505     1.2705  -0.669
> >> drugP            5.9720     0.6258   9.543
> >> time.num:drugP  -1.1262     0.1982  -5.681
> >> 
> >> Correlation of Fixed Effects:
> >>             tim.nm drugD  drugP
> >> drugD       -0.276
> >> drugP        0.000  0.127
> >> tim.nm:drgP -0.707  0.195 -0.396
> >>> 
> >> 
> >> _______________________________________________
> >> R-sig-mixed-models at r-project.org mailing list 
> >> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> >> 
> 
> 




More information about the R-sig-mixed-models mailing list