[R-sig-ME] large dataset - lmer2 vector size specified is too large
florian bw
florian.bw at gmail.com
Fri Mar 2 01:20:43 CET 2007
Hi,
I want to fit mRNA expression data to sex.
I have the following values:
expr: expression value (for gene/person)
affyID: gene ID
cephID: person ID
sex
with 224 genes and 195 persons, therefore 43,680 data points. Both
with the nlme and the lme4 package i get errors. I tried it with R 2.4
and 2.5, and the newest package versions.
I have a 64-machine with 8GB RAM. Is the dataset simply too large? I
already cut it down and would actually be glad if I could do the
calculation with ~ 8000x250 data points.
Thank you for your help.
Florian Breitwieser
UNSW Sydney
Systems Biolgy
---------------------------------------------------
> sessionInfo()
R version 2.5.0 Under development (unstable) (2007-02-26 r40806)
x86_64-unknown-linux-gnu
locale:
LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US.UTF-8;LC_MONETARY=en_US.UTF-8;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C
attached base packages:
[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"
other attached packages:
lme4 Matrix lattice nlme
"0.9975-13" "0.9975-11" "0.14-16" "3.1-79"
-----------------------------------------------------
> library(lme4)
> sex.lme <- lmer2(expr ~ affyID*sex + affyID|cephID,data=ds.n)
Error in vector("double", length) : vector size specified is too large
------------------------------------------------------
> library(nlme)
> sex.lme <- lme(expr ~ affyID*sex,random=~affyID|cephID,data=ds.n)
Error: cannot allocate vector of size 4.7 Gb
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 829281 44.3 5714627 305.2 10890793 581.7
Vcells 1881820 14.4 1034019068 7889.0 1103035467 8415.5
Another time I got the following message:
> sex.lme <- lme(expr ~ affyID*sex,random=~affyID|cephID,data=ds.n)
*** caught segfault ***
address (nil), cause 'unknown'
Traceback:
1: lme.formula(expr ~ affyID * sex, random = ~affyID | cephID, data = ds.n)
2: lme(expr ~ affyID * sex, random = ~affyID | cephID, data = ds.n)
More information about the R-sig-mixed-models
mailing list