<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
It seems to me that the specific function <b><i><code>sm = "PLOGIT"</code> </i></b>for calculating proportions using the number of events and the number of observations (populations) in the
<code>metaprop</code> function employs a logit transformation.</div>
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Therefore, to represent the proportions in the figure (meta-regression) without negative values on the X-axis, it would be necessary to apply the inverse logit transformation (using
<b><i><code>transf.ilogit</code>)</i></b>. I'm not sure if this is scientifically the correct approach (applying the inverse logit transformation).</div>
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
You can use the dataset and de codes below:</div>
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Dataset called => opioidmisuse</div>
<div class="elementToProof" style="margin-top: 1em; margin-bottom: 1em; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
codes => Testing_sharing</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div id="Signature" style="color: inherit;">
<div style="font-size: 10pt;"><b>Sancho Xavier</b></div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt;">
Candidate for Postgraduate Programme in Epidemiology in Public Health</div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt; color: rgb(0, 0, 0);">
MBA in Data Science and Analytics at USP (ongoing)</div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt;">
<b>Linkedin:</b> linkedin.com/in/sancho-xavier-59565a18a</div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt;">
<b>Orcid iD:</b> https://orcid.org/0000-0001-9493-4098</div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt; color: rgb(0, 0, 0);">
<b>Web of Science (Clarivate):</b> <a href="https://www.webofscience.com/wos/author/record/GON-5675-2022">https://www.webofscience.com/wos/author/record/GON-5675-2022</a></div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt; color: rgb(0, 0, 0);">
<b>Reference Citation Analysis (RCA): </b><a href="https://referencecitationanalysis.com/00001471">https://referencecitationanalysis.com/00001471</a></div>
<div style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt;">
<b>Whatsapp: </b>+258 852255846 </div>
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 10pt;">------------------------------------------------------------------------------</span></div>
<div id="appendonsend"></div>
<hr style="display:inline-block;width:98%" tabindex="-1">
<div id="divRplyFwdMsg" dir="ltr"><font face="Calibri, sans-serif" style="font-size:11pt" color="#000000"><b>De:</b> Michael Dewey <lists@dewey.myzen.co.uk><br>
<b>Enviado:</b> segunda-feira, 12 de agosto de 2024 07:04<br>
<b>Para:</b> R Special Interest Group for Meta-Analysis <r-sig-meta-analysis@r-project.org><br>
<b>Cc:</b> Sancho Xavier <sanchoxavierxavier@gmail.com><br>
<b>Assunto:</b> Re: [R-meta] Facing some issues on Meta - regression</font>
<div> </div>
</div>
<div class="BodyFragment"><font size="2"><span style="font-size:11pt;">
<div class="PlainText">It would be easier to help you if you (a) showed your data using dput(),
<br>
(b) pasted your actual code rather than showing a screenshot which means <br>
having to type it all in again.<br>
<br>
Having said that I believe that the plot functions in meta have an <br>
argument to backtransform the estimates. From the help for bubble<br>
<br>
Backtransf<br>
<br>
A logical indicating whether results for relative summary measures <br>
(argument sm equal to "OR", "RR", "HR", or "IRR") should be back <br>
transformed. If backtransf=TRUE, results for sm="OR" are printed as odds <br>
ratios rather than log odds ratios, for example.<br>
<br>
Michael<br>
<br>
On 11/08/2024 20:28, Sancho Xavier via R-sig-meta-analysis wrote:<br>
> Hi everyone, I hope you're all doing well.<br>
> I need your help with something. I'm applying a meta-regression on a <br>
> dataset where I initially used the |metaprop| function to obtain the <br>
> pooled proportions of hypertension. Now, I'm trying to understand how <br>
> variables like the year of publication, study type, and publication <br>
> pathways influence the effect size (proportion) in the meta-analysis.<br>
> Dataset (called "hiper")<br>
> <br>
> Here are the scripts I used:<br>
> First, I applied |metaprop|:<br>
> <br>
> Next, I applied the meta-regression:<br>
> <br>
> After generating the plot (see below), I noticed that without <br>
> transforming the |TE| and |seTE| values, the proportions on the x-axis <br>
> appear as negative values. I would like to know if my scripts for the <br>
> meta-regression are correct and whether it would be necessary to apply a <br>
> logarithmic transformation (|transf.ilogit(m.prop$TE)| and <br>
> |transf.ilogit(m.prop$seTE)|) to fix this.<br>
> Additionally, I would appreciate your advice on which method is more <br>
> appropriate: using the transformed values or the non-transformed ones?<br>
> <br>
> Thanks in advance for your help!<br>
> Best wishes,<br>
> <br>
> *Sancho Xavier*<br>
> Candidate for Postgraduate Programme in Epidemiology in Public Health<br>
> MBA in Data Science and Analytics at USP (ongoing)<br>
> *Linkedin:* linkedin.com/in/sancho-xavier-59565a18a<br>
> *Orcid iD:* <a href="https://orcid.org/0000-0001-9493-4098">https://orcid.org/0000-0001-9493-4098</a><br>
> *Web of Science (Clarivate):* <br>
> <a href="https://www.webofscience.com/wos/author/record/GON-5675-2022">https://www.webofscience.com/wos/author/record/GON-5675-2022</a>
<br>
> <<a href="https://www.webofscience.com/wos/author/record/GON-5675-2022">https://www.webofscience.com/wos/author/record/GON-5675-2022</a>><br>
> *Reference Citation Analysis (RCA): <br>
> *https://referencecitationanalysis.com/00001471 <br>
> <<a href="https://referencecitationanalysis.com/00001471">https://referencecitationanalysis.com/00001471</a>><br>
> *Whatsapp: *+258 852255846<br>
> ------------------------------------------------------------------------------<br>
> <br>
> _______________________________________________<br>
> R-sig-meta-analysis mailing list @ R-sig-meta-analysis@r-project.org<br>
> To manage your subscription to this mailing list, go to:<br>
> <a href="https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis">https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis</a><br>
<br>
-- <br>
This email has been checked for viruses by Avast antivirus software.<br>
<a href="http://www.avast.com">www.avast.com</a><br>
</div>
</span></font></div>
</body>
</html>