<div dir="auto">Hi Wolfgang, </div><div dir="auto"><br></div><div dir="auto">Thanks so much for your reply. I am actually wondering if there is another way to compute ‘<span style="color:rgb(0,0,0)">standardized mean change using change score standardization’ or SMCC as the approach given in your article requires correlation between the measurements. The correlations are missing in the studies that I am working on. </span></div><div dir="auto"><span style="color:rgb(0,0,0)"><br></span></div><div style="background-color:rgba(0,0,0,0)!important;border-color:rgb(255,255,255)!important;color:rgb(255,255,255)!important" dir="auto"><font style="color:rgb(0,0,0)">Also, as </font><span style="color:rgb(0,0,0)">standardized response mean (SRM) is a kind of effect size, will it be OK to calculate its standard error using the attached formula where ‘d’ will be replaced by SRM? </span></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><span style="color:rgb(0,0,0)"><div><img src="cid:17bc86ada59ece5dd2c2" style="max-width: 100%;"></div></span></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)">Any thoughts? </font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)">Please let me know. </font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)">Thanks again, </font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(255,255,255)" dir="auto"><font style="color:rgb(0,0,0)">Hazel </font></div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Aug 25, 2021 at 5:23 AM Viechtbauer, Wolfgang (SP) <<a href="mailto:wolfgang.viechtbauer@maastrichtuniversity.nl">wolfgang.viechtbauer@maastrichtuniversity.nl</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;padding-left:1ex;border-left-color:rgb(204,204,204)">Dear Hazel,<br>
<br>
Based on some online searching, the 'standardized response mean' appears to be the mean change in some dependent variable divided by the SD of the change scores. This is the same as the 'standardized mean change using change score standardization', which is measure="SMCC" in escalc(). See here:<br>
<br>
<a href="https://wviechtb.github.io/metafor/reference/escalc.html#arguments" rel="noreferrer" target="_blank">https://wviechtb.github.io/metafor/reference/escalc.html#arguments</a><br>
<br>
Best,<br>
Wolfgang<br>
<br>
>-----Original Message-----<br>
>From: R-sig-meta-analysis [mailto:<a href="mailto:r-sig-meta-analysis-bounces@r-project.org" target="_blank">r-sig-meta-analysis-bounces@r-project.org</a>] On<br>
>Behalf Of Hazel Wellington<br>
>Sent: Wednesday, 25 August, 2021 11:13<br>
>To: <a href="mailto:r-sig-meta-analysis@r-project.org" target="_blank">r-sig-meta-analysis@r-project.org</a><br>
>Subject: [R-meta] Standardized response mean<br>
><br>
>Hi everyone,<br>
>Hope you are well. I have a query re: meta-analysis of responsiveness<br>
>measures.<br>
><br>
>My effect size is a standardized response mean and I am wondering how can I<br>
>compute its variance or standard error.<br>
> Also, should I use the same code in metafor for standardized response mean<br>
>as we do for Cohen’s d?<br>
><br>
>Please let me know.<br>
>Thank you,<br>
>Hazel<br>
</blockquote></div></div>