Journal of
Clinical
Epidemiology

" 3
ELSEVIER Journal of Clinical Epidemiology 58 (2005) 882-893

ORIGINAL ARTICLES

The performance of tests of publication bias and other sample size
effects in systematic reviews of diagnostic test accuracy was assessed

Jonathan J. Deek§, Petra Macaskill, Les Irwig
Screening and Test Evaluation Program, School of Public Health, University of Sydney, Sydney, New South Wales 2006, Australia
Accepted 17 January 2005

Abstract

Background and Objective: Publication bias and other sample size effects are issues for meta-analyses of test accuracy, as for
randomized trials. We investigate limitations of standard funnel plots and tests when applied to meta-analyses of test accuracy and look
for improved methods.

Methods: Type | and type Il error rates for existing and alternative tests of sample size effects were estimated and compared in
simulated meta-analyses of test accuracy.

Results: Type | error rates for the Begg, Egger, and Macaskill tests are inflated for typical diagnostic odds ratios (DOR), when disease
prevalence differs from 50% and when thresholds favor sensitivity over specificity or vice versa. Regression and correlation tests based
on functions of effective sample size are valid, if occasionally conservative, tests for sample size effects. Empirical evidence suggests that
they have adequate power to be useful tests. When DORs are heterogeneous, however, all tests of funnel plot asymmetry have low power.

Conclusion: Existing tests that use standard errors of odds ratios are likely to be seriously misleading if applied to meta-analyses of
test accuracy. The effective sample size funnel plot and associated regression test of asymmetry should be used to detect publication bias
and other sample size related effect® 2005 Elsevier Inc. All rights reserved.
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1. Introduction Determinants of publication bias are likely to be different
for investigations of test accuracy. The analysis of a study
of test accuracy typically involves computation of estimates
of sensitivity and specificity (or possibly likelihood ratios),
together with 95% confidence intervdls3]. In contrast to
reporting of randomized trials, there is no stated null hypo-
thesis or computation of an associatedalue. Thus, pub-
Clication bias is unlikely to be associated with statistical
nonsignificance.

Funnel plots can detect any effect that is related to sample
size. Publication bias is the most commonly cited sample-
'size-related effect, but other factors such as study quality or
the type of population may also be related to sample size. Here
we explore theoretical issues that underpin the investigation
. . of any sample size effect for diagnostic tests and develop
trials have been recomm(_and{ﬂjZ] and used for reviews funnel plots that are appropriate for reviews of test accuracy.
of test accuracyl13,14] Evidence that the performance of . : o
these tests deteriorates as odds ratios increase raises concerSneCtl.On 2reviews e_X|st|ng tests forf_un_nel plotasymmetry and
that they may not be appropriai5-17] considers how their performance is likely to be affected by

characteristics typical of studies of test accuracy. Section 3
introduces a new funnel plot and tests for asymmetry that
we apply, together with existing tests, to a case study in
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The validity of a systematic review depends on minimiz-
ing bias in the identification of studies. If the studies that
are included in a review have results that systematically
differ from relevant studies that are missed, then the findings
will be compromised by publication bid&,2]. Systematic
reviewers are therefore advised to use comprehensiv
searches to attempt to locate all relevant stuf3es].

In stark contrast to the substantial literature and empirical
evidence available for randomized controlled trifls6—
11], there has been little research into the determinants
magnitude, and impact of publication bias for studies of
diagnostic test accuracy. Recently, funnel plot analyses de-
veloped for investigating publication bias in randomized
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the impact of publication bias on estimates of diagnostic ~ For diagnostic test reviews, the DOR summarizes test
accuracy. We base our investigations on the assumption thaticcuracy as a single number and it is used routinely in
the probability of publication decreases with lower values summary receiver operating characteristic (ROC) meta-anal-

of diagnostic accuracy, and investigate the impact of four
possible selective publication mechanisms.

2. Theory and methods

2.1. Detection of publication bias and other sample
size effects using funnel plots

yses[24,25] Separate funnel plots for sensitivity and speci-
ficity (after logit transformation) are unlikely to be helpful
for detecting sample size effects, because sensitivities and
specificities will vary due to both variability of threshold
between the studies and random variability. Simultaneous
interpretation of two related funnel plots and two tests for
funnel plot asymmetry also presents challenges. Hence, we
restrict our investigation to funnel plots based on the INDOR.

The funnel plot has been recommended as a graphical

device for investigating the possibility of publication bias
or other sample size effects for reviews of randomized con-
trolled trials[19]. By plotting estimates of study findings,
usually the log odds ratio (InOR), against their sample size
or precision (estimated by the reciprocal of the standard
error), indirect evidence for bias can be discerned from the

shape of the plot. In the absence of a sample size effect,

the points will form a symmetrical funnel shape around the
overall estimate of effect, points from small or low-precision

studies being more dispersed around the estimate of overal

effect than points from large or high-precision studies. Non-
publication of small nonsignificant studies will cause a gap
in the plot and introduce asymmetry if there is a treatment
effect. Asymmetry may result from publication bias, but can
also be caused by other so-called sample size effects, such
clinical heterogeneity and variation in study quality if they
are also linked to sample sif20]. Various statistical tests,
notably Begg'’s rank correlatid21], Egger’s regression test
[20], and Macaskill's regression tddt6], have been devised
to objectively assess asymmetry. If a funnel plot is asymmet-
ric, it can be deduced that some mechanism that links
study results with sample size is present—but identifying
the mechanism is not straightforward.

Song et al[12] proposed that the funnel plot can also be

a

2.3. Exigting tests for sample size effects

The performance of a statistical test is based on assessing
both type | and type Il error rates. In the present context, a
type | error occurs when the test result is statistically signifi-
cant but there is no sample size related effect. Type | errors
should occur with the same probability as thealue that
defines statistical significance. Type | error rates that are
lower give overly conservative hypothesis tests; those that
@re higher lead to false claims of sample size effects. Type
Il errors occur when the test is not statistically significant
despite existence of a sample size effect. The lower the type
Il error rate, the higher the statistical power to detect
sample size effects. Tests which have high power are pre-
ferred, provided their type I error rates are not inflated.

Begg and MazumddgR1] proposed a test for publication
bias based on assessing the significance of the correlation be-
tween the ranks of effect estimates and the ranks of their
variances. The test involves standardizing the effect esti-
mates to stabilize the variances and performing an adjusted
rank correlation test based on Kendatl'dt has been shown
to have low power and a conservative type | error rate
when used for dichotomous outcome dEit&,16]

Egger et al[20] proposed a test for funnel plot asymmetry

used for reviews of diagnostic test accuracy; they produced based on a regression of standardized effect estimates against

funnel plots of log diagnostic odds ratio (INDOR) against

standard errors for 28 meta-analyses and applied the Begd®

and Egger tests for asymmetry. Depending on the criteria el i _ -
dige significance of the slope of a simpler inverse variance-

used, between 6 and 12 of these meta-analyses demonstrat
significant funnel plot asymmetry. Meta-analyses that in-

precision (standard error, or SE), to test whether the inter-
ept deviates from zero. Sterne et[dl5] showed that the
significance of the intercept in this model is equivalent to

weighted regression of observed effect sizes against standard

cluded fewer studies and searched fewer databases wer&Or and demonstrated that Egger’s approach may be more

more likely to have asymmetrical plots.

2.2. Choice of horizontal axis for funnel plots
of diagnostic test accuracy

Various funnel plots can be constructed for dichotomous

powerful than the Begg test for detecting publication bias.
Irwig et al.[26], however, expressed concern that Egger’s
regression approach is likely to be biased as the predictor
(SE) in the regression model is measured with error, and
Macaskill, Walter, and Irwig16] later demonstrated by sim-
ulation the existence of a correlation that inappropriately

data in a meta-analysis determined by the choice of theinflated type | error rates when the OR differed from one.

measure of effectand measure of preci$iih23] Sterne and

Macaskill et al.[16] proposed using study sample size (N)

Egger[22] showed that plotting the INOR against its stan- as a predictor variable in the inverse variance-weighted
dard error is optimal for meta-analyses of trials, because regression approach, and showed that it gave a more
the expected funnel shape would be pyramidal rather thanappropriate, if conservative, type | error rate. They also noted
curvilinear and use of odds ratios or risk ratios minimizes that computing regression weights as the inverse variance of
unexplained heterogeneity. the average prevalence (pooling samples and events across
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the two groups) gave appropriate type | error rates when variation in test thresholds. 1Appendix A we show that
treatment effects were large, but that all approaches thatthe SE of the InDOR does not fulfill these criteria. The
use total sample size as the explanatory variable have lowonly term to behave appropriately was the sample size depen-

statistical power. dent term,
The published evaluations of these three tgdis— 1 1
17,21,22]have concentrated on randomized controlled trial —+ =

scenarios where studies have equal numbers of treated and N

control participants and treatment effects are small (odds o (1, + 1/n,)"/2 which is equal to 2/ESE. Consequently,

ratios are close to 1). we propose that funnel plots for diagnostic test accuracy
plot the INDOR against 1/E$%—or, equivalently, against
accuracy meta-analyses Two obvious alternative tests for asymmetry follow as

(a) an adaptation of Begg's rank correlation test, substituting
There are three particular characteristics of studies of 1/ESS for the variance of the |og odds ratio; (b) a regression
diagnostic test accuracy that can result in asymmetry for of InDOR against 1/ES%, weighting by ESS. In section 5,
funnel p|OtS that use standard error of the INDOR or total we evaluate the performance of these new tests and the
sample size as a measure of precision, in the absence of gxisting tests by simulation. First, however, we consider
true underlying sample size related effect. the application of the tests in a case study.

1. Values of DOR are typically very high, with the num-
bers of false positives or false negatives, or both, quite
often being small. The asymptotic standard error is a 4 Case study

b?ased estimate of th_e true standard error, with larger  keaaron et al[28] reviewed the diagnostic accuracy of

bias for smaller cell sizes, as occurs with larger DORS oninvasive tests for detecting deep vein thrombosis. They

and smaller studief27]. located 14 suitable studies comparing venous ultrasonogra-
2. The standard error of the INDOR depends on the pro- ,y, i asymptomatic patients with venography (the refer-
portion that is test positive. Individual studies of test gpce standard).

evaluations often differ (either explicitly or implicitly) Three alternative funnel plots are presenteHign 1 plot-

in the diagnostic threshold used to define test positives,ting INDOR against (a) the standard error of the INDOR,

leading to variability in the proportion that are test ) the total sample size, and (c) the inverse of the square root

positive between studies. of the effective sample size. For computation of the standard
3. Diagnostic studies commonly have unequal sample gror aqddition of 0.5 was made to all cell counts for all
sizes in diseased and nondiseased groups, depending;,dies to avoid division by zero errors.

on (a) whether they use a case-control or clinical  peqgression lines are plotted as obtained from the Egger

cohort design and (b) the prevalence_ of disease in the[E(SE)], Macaskill [M(N)], and the proposed effective sample

sample. Unequal numbers of nondiseasag &nd  gjze regression test [D(ESS)], respectively. Significance tests
diseasedrt) will reduce the precision of anestimate of i gicate that asymmetry is evident in the standard error plot

test accuracy for a given total sample size. Sample (P = .006), borderline in the sample size pld? € .10)

size related precision when there are unequal group gnq not present in the effective sample size pRot(.89).

sizes is more appropriately summarized by the effec- \giaply, the trend towards less precise studies giving higher

tive sample size ESS, where ESS4nny)/(ny + ny). values of diagnostic test accuracy evident in the Egger plot
is reversed in the subsequent two plots.

Examination of the points reveals that the locations of
studies 4 and 13 change between the three plots. These
two studies have the highest estimated DOR (318 and 1,138)
and standard errors considerably larger than the other 12
trials (1.48 and 1.52, the next largest being 0.98). These two
points are influential in the E(SE) test of asymmetry; when
they are deleted, the test is of only borderline significance
(P =.09).

Plots of INDOR against N and 1/E8%reveal that, al-
though these studies have the highest standard errors, their
total sample sizes are above the median (ranked 4th and 6th

A funnel plot for studies of diagnostic test accuracy out of 14) and effective sample sizes are ranked 6th and
should not display asymmetry if variation in the magnitude 9th. These changes in ranking render the regression tests
of the DOR is due solely to sampling error and/or there is nonsignificant or of only borderline significance. The high

The algebraic relationship between the standard error of
the INDOR, effective sample size, proportion test positive
and the estimated DOR is expounded Appendix A
The Begg, Egger, and Macaskill tests all depend in some
way on the standard error of INDOR, and Macaskill's test
also depends on total sample size.

3. A robust funnel plot and test for asymmetry suitable
for use with meta-analyses of diagnostic test accuracy



J.J. Deeks et al. / Journal of Clinical Epidemiology 58 (2005) 882—893 885

E(SE) : P=0.006 M(N) : P=0.10
o 4
\
/
\\ /
\ o /
\ S /
\ @ /
\ /12
= b14
o v (1] \ Q) uﬁl
= o1 N |10 e12 N /
w N " g /
.2 6 S
‘E \$9 o« / o7
© \:3 [« !
g o5 Y, g *14
© e11 \ /
P S \ (7] /| e10
[0} \ =] /
\ B L1 / o9
\ - o5
N 1 o
\\ /:2 o3
\
N /
\
-1 : e o1, :
1 10 100 1000 1 10

Diagnostic Odds Ratio

Fig. 1. Funnel plots for a meta-analysis of venous ultrasonography to detect deep vein thrombosis in asymptomatic patients [28] using Egger E(SE),
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Macaskill M(N), and the effective sample size D(ESS) weighted regression tests of funnel plot asymmetry.

standard errors of the INDOR for studies 4 and 13 in the pres-5.1. Parameters varied in simulation

ence of average sample sizes are likely to be due to these two
studies having (a) the highest observed specificity (100%),
indicative of a high test threshold, and (b) the highest DOR.
Thus, the results of the Egger test may be explained by
the estimates of standard error being overly influenced by the
extreme diagnostic threshold and high test accuracy.
Whether the nonsignificant result of the effective sample
size regression test D(ESS) is likely to be a correct finding
depends on the power of the test, which is evaluated in the
simulation studies described in sections 5 and 6.

5. Evaluation by simulation

Because one of the best-known sample size effects is
publication bias, we evaluated the performance of existing
tests and the proposed new tests for sample size related
effects through simulating meta-analyses of diagnostic tests
with and without publication bias.

Simulations were undertaken in Stata version 8 (Stata-
Corp, College Station, TX, USA). Each data set contained
results from 20 studiek (& 20). Sample sizes were rede-
fined for each simulation and varied betwers 20 and
n = 2,000 (randomly sampled from a uniform distribution).

Using an underlying prevalenqe each study was ran-
domly divided into diseased and nondiseased groups and a
value of a continuous diagnostic meas@:gandomly sam-
pled for each individual from logistic distributions as shown
in Fig. 2, with means and standard deviationsuefand o,

The base scenario considered distributions for diseased
and nondiseased created using the same standard deviation
(o1 = 0, = 0), and fixing the threshold parameter halfway
between the means of the distributions—that is, with
t = (U, + Mp)/2—such that sensitivity: specificity. The
prevalencep was set at 0.5. From this base scenario, varia-
tions to parameter values were made as follows.

1. The threshold was increased in steps of @5from

the average of the means up to,Z2bove the average
of the means.

. The threshold was randomly chosen from a uniform

distribution for each study with ranges of between
0.5071 and &5,. Symmetry of the threshold around the
average of the means was relaxed.

. Prevalence of disease took values of 50%, 40%,

30%, 20%, 10%, and 5%.

. The prevalenc@ was randomly chosen from a uni-

form distribution for each study. Values were chosen
from the ranges 40%-50%, 30%-50%, 20%—-50%,
10%-50%, and 5%—50%.

. Heterogeneity in diagnostic accuracy was introduced

by adding a valuer to the difference between the
meansy, — W, for each study. The value af was
sampled from a normal distribution with zero mean
and standard deviation @3, 0.204, or 0.35;.

. The variability of the diagnostic measure in the dis-

eased was increased t@introducing asymmetry
into the shape of the ROC curve.

for nondiseased angd, and o, for diseased (wherg, = Results are reported only for DOR of 1, 38, and 231,

H1). A diagnostic thresholtwas defined for each study and and only for the selection of the parameter combinations
test results declared positive ® >t and negative if necessary to demonstrate key findings. Uniform distribu-
0 < t. Participants in each study were classified as having tions were used to introduce random specifications for design
true positive, false negative, false positive and true negative features (threshold, prevalence, sample size) for which the
diagnoses as indicated Fig. 2, with the DOR, sensitivity, investigator has control, and normal distributions used other-
and specificity computed as explainedAppendix B wise (for heterogeneity in diagnostic accuracy).
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Fig. 2. Underlying bilogistic distribution model used in the simulatidishreviations: FN, false negative; FP, false positive; TN, true negative; TP, true positive.

5.2. Methods used to introduce publication bias be sampled until 20 studies had been included in each meta-
_ ) ) analysis, the number censored in the process being noted.
A one-sided censoring mechanism, adapted from the o+ aiternative measures were considerechfosensi-
function used by Begg and Mazumdg@l], was used 10 ity specificity, square root of Youden’s index (sensitiv-
introduce differing degrees of publication bias. The probabil- ity + specificity — 1), and the square of the area under
ity of selection of a study for inclusion in a meta-analysis iS the ROC curve (AUC). Transformations for the last two
given by aweight functiom(A;) = exp[-B(1 — A)“], where  parameters were chosen empirically to achieve similar
A is a measure of diagnostic accuradyig; 3). Studies  proportions being censored as with comparable values of
were included if a random number drawn from a [0,1) uni- sensitivity and specificity. The AUC was used as a measure
form distribution was less tham(};). Studies continued to  of overall diagnostic accuracy, rather than the DOR,

inclusion probability

beta=4 <~ ————- beta=8
........... beta=12 —— - beta=20
— — — Deta=36 —_ beta=60

Fig. 3. Publication bias censoring functions based on the Begg and Mazumdar weight function [21].
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because of the convenience of it taking values between 0.5expected from the specified parameter values. The impact of
and 1, similar to the values of the other three measures ofpublication bias on statistical power was assessed in simula-
diagnostic accuracy. The valwewas fixed at 2.5. Values tions with parameter values chosen to be characteristic of
of B that censored 10%, 25%, and 50% for each of the four a meta-analysis with underlying variation in diagnostic

accuracy parameters were identified empirically. threshold. Studies were generated with an average DOR
of 38 (U, — M1 = 20), with diagnostic thresholds varying
5.3. Number of simulations uniformly over 25 betweeny; and,, with the proportion

diseased varying uniformly between 10% and 50% and the

To give adequate precision for estimating empirical type variance of the diagnostic marker equal in diseased and

| error rates, 10,000 simulations were undertaken for eachnondiseased. Simulations were first undertaken with no het-

combination of parameters The standard errors for estimateserogeneity in test accuracy, but then with increasing degrees

of event rates of 2.5%, 5%, and 10% are 0.16%, 0.22%, andof heterogeneity generated by introducing a random effect
0.30%, respectively. with standard deviations up to @3

5.4. Assessment of the impact of publication bias
and performance of tests for funnel plot asymmetry 6. Results

Type | error rates were assessed from simulations withoutg 1. Type | error rates

study censoring for the following five tests of funnel plot . )
asymmetry: Empirical type | error rates for the base scenario and a

selection of parameter combinations are showRig 4. In
1. B(SE), rank correlation of INDOR with var(InDOR)  the base scenario with a DOR of one, a diagnostic threshold
(Begg and Mazumda21]); set so that sensitivity: specificity, and with equal numbers
2. E(SE), regression of InDOR with SE(INDOR) of diseased and nondisease®ig( 4, row 1, column 1),
weighted by inverse variance INDOR (Egger etal. all tests achieve empirical type | error rates close to the

[20]); nominal 2.5% and 5% values in both tails, although rates
3. M(N), regression of INDOR withweighted by inverse  for the rank correlation tests B(SE) and B/D(ESS) are a little

variance INDOR (Macaskill et a[16]); low. The percentage significant at the two-tailed 5% (10%)
4. D(ESS), regression of INDOR with 1/E%Sveighted levels are: E(SE) 4.7% (10.0%), M(N) 5.3% (10.0%),

by effective sample size; and D(ESS) 4.8% (10.1%), B(SE) 3.8% (8.9%), and

5. B/D(ESS), rank correlation of InDOR with 1/ESS. B/D(ESS) 3.7% (8.9%).

For diagnostic accuracy reviews, we would expect the
probability of publication to be higher for higher diagnostic
accuracies. Thus, we have presented the performance of tests |ncreasing diagnostic accuracy adversely affected the per-
for asymmetry using one-sided 2.5% and 5% significance formance of B(SE), E(SE), and M(N), but had little impact
tests, as well as the more conventional two-sided 5% and g the D(ESS) and B/D(ESS) tes&d. 4, column 1). Two-
10% tests. tailed type | error rates were reasonable for all tests, but type

Type | error rates were estimated in simulations where | error rates for one-tailed tests were not. At a DOR of 231,
no censoring was present. The proportions statistically sig- the proportions in the left tail at the 2.5% (5%) levels were
nificant at 2.5% and 5% levels in each tail were compared pearly twice their nominal level: (E(SE) 5.3% (10.2%), M(N)
with nominal 2.5% and 5% significance levels. Statistical 5 504 (9.9%), and B(SE) 4.8% (9.5%). The ESS-based re-
power was measured in simulations where censoring did gression test D(ESS) had more appropriate proportions sig-
occur. The proportion of tests for funnel plot asymmetry pjficant of 2.1% (4.2%); the Begg ESS-based test B/D(ESS)
significant at 5% and 10% two-tailed levels were noted.  pehaved conservatively, with only 1.5% (3.6%) significant.

Two approaches were used for meta-analysis. Separate \yhere variation in other simulation parameters intro-
estimates of sensitivity and specificity were obtained by guced poor performance for particular tests, the problems

computing weighted averages of logit sensitivity and logit ajmost always were magnified with increasing diagnostic
specificity using inverse variance weighting. An estimate 5ccyracy.

of the average DOR was obtained from the Moses SROC

regression modeg24]. AQ unweighted analysis was u_sed, 6.3. Impact of threshold selection

as recommended by Irwig et §29], and was noted to give

estimates close to those predicted from the chosen parameter Type | error rates were increased for E(SE), M(N), and
values when no publication bias was present. The impactB(SE) when the threshold differed from the sensitivity

of publication bias was assessed by comparing results ofspecificity value and when the DOR was greater than 1.
meta-analyses where censoring did occur with results with- The values irFig. 4, column 2 are based on positioning the

out study censoring, as well as with the theoretical result threshold a distance; above the average of the means

6.2. Impact of increasing diagnostic accuracy
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BASE SCENARIO THRESHOLD EFFECTS PREVALENCE EFFECTS ACCURACY EFFECT
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Fig. 4. Empirical type | error rates for five tests of funnel plot asymmetry: B(SE), E(SE), M(N), D(ESS), and B/D(ESS). White boxes indicate 2.5% tails;
black boxes indicate 5% tails; vertical lines indicate nominal positions of tails. The five tests are explained in section 5.4.

of the distributions, equivalent to fixing sensitivities at 50% percentage diseased decreased and DOR increased. When
and 71% and specificities at 97% and 99%, for DORs of 38 only 5% of study participants were diseased, proportions
and 231, respectively. significant at the 5% (10%) type | error rates for a DOR of
Proportions significant at the two-tailed 5% (10%) type 231 were 33.9% (46.5%) for E(SE), 16.5% (26.3%) for
I error rates for Egger’s test E(SE) were highly inflated to M(N), and 15.8% (26.7%) for B(SE). Although the effective
13.1% (21.4%) and 25.0% (37.2%) for DORs of 38 and sample size tests had more appropriate type | error rates of
231. Incontrast, the ESS-based regression test D(ESS) main3.6% (7.8%) for D(ESS) and 3.2% (7.6%) for B/D(ESS), the
tained 5% (10%) type | error rates of 4.1% (8.8%) and 3.9% (istributions were asymmetric, the proportions significant at
(8.1%), close to the nominal values, although the distribution the 2.5% (5%) level in the left tail being only 0.3% (0.8%)
of resu]ts became slightly asymmetric in the two tails as for the D(ESS) and 0.5% (1.3%) for the B/D(ESS).
DORs increased. Values inFig. 4, column 5, represent type | error rates

Values inFig. 4, column 3, display empirical type | error oy simulations where a different disease prevalence of be-
rates for simulations where a different threshold was selectedtWeen 5% and 50% was selected for each study in the meta-

for each study from arange between the average of the means naivsis, the average prevalence being 22.5%. The same
an(_j 01 abovg the average of the means. The same patterr\[)(:lttern of inflated type | error rates for E(SE), B(SE), and
of inappropriately increased type | error rates for E(SE), \\) was evident, although type | error rates were only
B(SE), and M(N) Was evident, although error rates are of approximately double their nominal significance levels. The
smaller magnitude: the average threshold is anf above asymmetry for D(ESS) and B/D(ESS) was evident at
the average of the means. more extreme disease prevalences.

6.4. Impact of disease prevalence

Decreasing the proportion of diseased in the sample g 5 Impact of heterogeneity in diagnostic accuracy
caused problems for all non-ESS-based methods, with ex-

ceptionally high and asymmetric empirical type | probabili- Underlying diagnostic accuracy was varied between stud-
ties (Fig. 4, column 4). The problems increased when the ies in a meta-analysis by introducing a random effect with
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a normal distribution. Introduction of the random effect af- the DOR from 37 to 53 when 50% of studies were excluded.
fected E(SE), B(SE), D(ESS), and B/D(ESS) even when the In practical application, this change is small: the summary
average DOR was equalto one. Type | errors for the EggerandROC curve for a DOR of 53 passes through the sensitiv-
Begg methods became inflated, and ESS-based method#y = specificity= 88% point compared to sensitivity
became conservative. specificity= 86% point for a DOR of 37. Notable bias is
Column 6 ofFig. 4 shows results when a large random introduced, however, when separate meta-analytical esti-
effect with a standard deviation of @3is introduced. For mates are computed for sensitivity and specificity if the
a DOR of 38, a decrease of @3in the difference between censoring mechanism acts unequally on sensitivity and
the means causes the DOR to drop to 13, and an increasepecificity.
of0.30, givesaDOR of 112. Fora DOR of 231, the equivalent
figures are 78 to 685. Type | error rates are excessive forg g gatistical power
E(SE) and B(SE), whereas the ESS-based tests become con-
servative. For a DOR of 231, the proportion significant at ~ The statistical power of 10% two-sided tests for funnel
5% (10%) significance levels are 24.4% (38.1%) for E(SE), plot asymmetry is shown ifig. 6 for simulations created
13.0% (23.0%) for B(SE), 1.5% (4.3%) for D(ESS), and 1.7% using the same parameters asFiig. 5 without and with
(4.9%) for B/D(ESS). For Macaskil's sample size-based heterogeneity in DOR (including a random effect of@.
test M(N), the empirical type | error rate was 7.1% (13.0%).  Although the Egger E(SE) and Begg B(SE) tests show
the greatest power for detecting publication bias, the inflated
6.6. Impact of asymmetry in the SROC (DOR related type | error rate of these tests is evident in the values of
to threshold) power being above the nominal two-sided 10% level where
they intersect the true value of the DOR. The proposed ESS-

. Doubling t_h(_a standard deviation qf the di_stribution of based regression D(ESS) and rank correlation B/D(ESS)
diseased participants has the effect of introducing asymmetry;aqis show reasonable power when there is no heterogeneity

into the shape of the underlying ROC curve such that the j, bR the regression test outperforming the correlation
DOR changes with threshold. There was no additional oot \When test accuracy varies with a random effect as

impact of having an underlying asymmetric ROC when the e a5 through sampling variability, the power of all tests
threshold was fixed or varied between studies (data ”Otrapidly dissipates.

shown).

6.7. Impact of publication bias on estimates
of diagnostic test accuracy 7. Discussion

Figure 5depicts four illustrative meta-analysis datasets =~ We found that a funnel plot can be used to identify a
created by simulation with an underlying DOR of 38 with sample size related effect such as that caused by publication
variation in threshold, disease prevalence and accuracy (in-bias in reviews of diagnostic test accuracy. The Begg, Egger,
troduced by a random effect with standard deviation of and Macaskill tests of funnel plot asymmetry used for RCTs
0.30,). Studies have been censored using the four alternativeare, however, likely to be seriously misleading if applied in
publication bias mechanisms. Open circles indicate missing typical diagnostic test scenarios. DORs usually take values
studies; these are distributed as would be expected acwell above one, test thresholds often preferentially favor
cording to the censoring mechanism. Censoring removedsensitivity over specificity (or vice versa), there are usually
between 5 and 12 studies in each plot; censoring on sensitiv-fewer diseased than nondiseased, and heterogeneity in test
ity removed studies with low sensitivity, censoring on speci- accuracy is common. We have shown algebraically and by
ficity removed studies with low specificity, censoring using simulation how the approximate asymptotic standard error
Youden'’s index removed studies with either low sensitivity of the log odds ratio is affected by these phenomena and
or low specificity, and AUC-based censoring removed stud- how they cause the Begg, Egger, and Macaskill tests to
ies beneath the ROC curve with lower DOR. Despite the overestimate the frequency of sample size related effects.
censoring, changes in the estimated summary ROC curve su- We propose that systematic reviewers should undertake
perficially appear small. funnel plot investigations to examine the possibility of publi-

Average meta-analytical estimates of sensitivity, speci- cation and other sample size related effects using plots of
ficity, and DOR according to degree of censoring are given InDOR against 1/ES%, and test for asymmetry using re-
in Table 1 These are based on simulations with the same lated regression or rank correlation tests. We have shown
parameter values ashig. 5 with and without heterogeneity  that these tests are robust to features characteristic of studies
in DOR. For the Moses SROC regression model estimatesof diagnostic test accuracy, and that the regression test
of DOR, censoring c£€50% of studies appeared to make only has greater power to detect publication bias than the rank
a modest difference in test accuracy, regardless of thecorrelation test. Our observation of lower power for the
censoring mechanism used. Censoring on the DOR (throughcorrelation test is consistent with findings from previous
values of the AUC) introduced the largest bias, increasing studies[14,16]
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Fig. 5. Impact of publication bias on an example simulated meta-analyses. Censored studies indicated by open circles. The dashed line irRi@ates the S
curve estimated from the published studies, the solid line indicates the summary ROC curve estimated from all studies. DOR/AUC indicates censoring on
the diagnostic odds ratio through values of the area under the ROC curve.

Table 1 The problems we have identified with the approximate
Estimates of the effects of publication bias on meta-analytical asymptotic standard error of the log odds ratio also affect
estimates of test accuracy the use of inverse variance study weights for meta-analytical
Censored on pooling and meta-regression investigations when DORs are
Measure Sensitivity Specificity Youden's index DOR/AUC ~ Very much greater than one. Effective sample size—based
0% censored weights may offer a preferable alternatlye. o
DOR 37 37 37 37 Our simulations also suggest that, if meta-analysis is
Sensitivity, % 87 87 87 87 based on estimation of a DOR, the impact of publication
Specificity, % 86 86 86 86 bias on estimates of DOR is unlikely to be large; however,
0, . . . . . .
10§O§”S°red a8 a8 2 20 selective publication may seriously affect estimates of sensi-
Sensitivity, % 89 85 87 87 tivity anq specificity. These f|r_1d|r!gs were shown to pe valid
Specificity, % 84 88 86 87 for varying degrees of publication bias and for different
25% censored selection mechanisms. The evaluation of the impact of cen-
DOR 40 40 41 44 soring 50% of studies was based on simulations where study
Sensitivity, % 91 82 88 88 It iabl dth - f ti took
Specificity. % 81 % 87 a7 results were very variable and the censoring function too
50% censored a particularly steep form, which are conditions for the impact
DOR 44 46 46 53 of publication bias to be strong. Further empirical work
Sensitivity, % 94 75 88 90 needs to be undertaken to better understand the determinants
Specificity, % 75 94 87 88

and magnitude of publication bias for diagnostic accuracy
Diagnostic odds ratio (DOR) estimated from an unweighted Moses studies.

summary receiver operating characteristics (SROC) regression model. Sen- Notably, we have shown that the power of all statistical

sitivity estimated as the inverse variance-weighted average of logit sensitivi-

ties. Specificity estimated as the inverse variance-weighted average oflogittes?S of funnel pIOt asymmetry decrea_ses when the ,DOR

specificities. DOR/AUC indicates censoring on the diagnostic odds ratio Varies more than expected by chance in a way that is not

through values of the area under the ROC curve. associated with sample size. The proportion of the total
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Fig. 6. Empirical power of tests for funnel plot asymmetry.

variability that is attributable to sampling variability de- significant @ < .10) funnel plot asymmetry, compared to
creases as heterogeneity increases. In situations where studt2 using the Egger test, 5 using the Begg test, and 8 using
ies have highly variable results, the chances of detectingthe Macaskill test.
variability in accuracy associated with sample size are likely
to be low.

Funnel plot analyses show asymmetry for a variety of
reasons other than publication bias, including the type of Acknowledgments
population studied and poor study quality, if they are linked
both to sample size and observed diagnostic accUily
however, the likely direction of the relationships is not
always clear. Whereas for trials smaller studies are mor
likely to have larger effects due to poor methodological
quality, in diagnostic research it is possible that the larger
studies are of poorer quality. For, example large retrospective
studies in which investigators obtain test results from clinical
databases may be more biased than smaller prospective stud-
ies in which clinicians carefully recruit patients presenting
with a specific clinical problem. Larger studies may also be
more prone to verification bias, if adequate resources are notAppendix A
available to correctly ascertain the gold standard reference
diagnosis on all participants. Real differences in test accuracyRelationship of standard error with diagnostic
between participant groups will also induce asymmetry if oddsratio, threshold, and sample size
they are linked to sample size. For RCTs, sample sizes
are usually smaller for groups in which treatment effects are
expected to be largi1]. Because the design of diagnostic
test accuracy studies does not usually involve power calcula-
tions for testing hypotheses, it is not clear that the same
relationship would be as evident. Constructing funnel plots
using different symbols and colors to denote key study char- 1 1 1 1
acteristics may assist in eliciting likely causes of asymmetry. SE(InDOR)= TP + EN + EP + TN (A1)

In summary, we have shown that funnel plot investiga-
tions based on the standard error of the INDOR are seriouslyusing the terms@= DOR= (TP x TN)/(FP x FN);
misleading. We recommend instead using effective samplen; = number not diseased TN + FP; n, = number dis-
size—based funnel plots and associated regression tests odased= TP+ FN; andr = odds of testing negative in the
asymmetry. The impact of this change in funnel plot structure nondiseaseer TN/FP. Recall that variation im between
is likely to be high. Applying the proposed regression test studies in a meta-analysis reflects variation in the number
to the 28 reviews identified by Song et HI2], only 3 show testing positive due to differences in the threshold used to

We are grateful to Fujian Song for providing datasets
from his study[12], and to Patrick Bossuyt for comments on
o a previous draft. The work was supported by National Health
and Medical Research Council (NHMRC) grant 211205 to
the Screening and Test Evaluation Program. Jon Deeks is
supported by a U.K. Department of Health Senior Research
Fellowship in Evidence Synthesis.

To assess the mechanism by which the standard error of
the log-diagnostic odds ratio, or SE(InDOR), operates, con-
sider the re-parameterization of the asymptotic estimator
(where TP is true positive, FN is false negative, FP is false
positive, and TN is true negative)
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define test positive. This yields the following equation: standard error and its terrf(®y4, ny), g(r), andh(g, r, n,) are
SE (In DOR)= (A2) SE (In DOR)=/f(ny, n2)g(r) + h(@, r, np) (A6)
1 1 1 e—1\[1 r This calculates as [(0.052 249.00)— 10.65}> = 1.48
\/n_l + o ' tor2t m I\ o for study 4 and as [(0.045 211.00)— 7.26]%2 = 1.52 for
study 13.
The three functions contained in this equation have the Ittherefore appears that for these two studies the observed
following three properties. high threshold dominates the computation of SE (from com-
First, the sample size dependent term: parison of the values @f(r) of 249 and 211 with the minimal

value ofg(r) of 4). The DOR dependent terhfe, r, n,) is
f(ng,np) = 1 I 1 _mtm (A3) also Iarge_, .byt is negative because the specificity is higher
n n NNy than sensitivity.

The standard error inversely relates to effective sample
size (4ny)/(ny + ny), appropriately reflecting unequal num- Appendix B
bers in diseased and nondiseased groups.
Second, the proportion testing positive dependent term: Computation of diagnostic odds ratio, area under

9(r) =1 + (L) + 2 (A4) the curve, sengitivity, and specificity

For fixed values of1;, W, 01, 05, andt, the underlying
value of the diagnostic odds ratio (DOR) for the simulation
can be calculated as

The standard error is minimized when the numbers of
true negatives and false positives are equad (). For fixed
values ofn; andn,, shifting the threshold changeand alters

the standard error in a multiplicative manner. _ \/? Ho—t g —t
Third, the DOR dependent term: DOR = exr{ _( 0, o, (B1)
-1 which simplifies to
h(gr.ny) = (‘p ) (— - 5) (A5) P
n2 r ? u _ H
DOR = exp{\/— (2—1) (B2)
3 o

R
n, /\TN TP

The standard error is increased or decreased according t

wheno, = 0, = g, and is independent of the threshotd,
gor this simplified situation, the equivalent area under the

an additive term dependent on the DOR. The term is CUrveé (AUC) can be computed using a formula from

zero when DOR= 1 (i.e., for a test with no diagnostic value) Walter [32]:

and in the special case when sensitivity and specificity are DOR

equal. For a fixed value of the term is positive if sensitivity AUC = m [(DOR —

is greater than specificity and negative otherwise. The mag-

nitude of the term decreases with increasing numbers of (B3)

diseased. ; s P ;
Thus, of the three functions, only the firéy, ny), oper- - ';’cr)]lclaol\jvrferlymg sensitivity and specificity can be obtained

ates appropriately under the three characteristics of meta-

1) — In DOR]

analyses of diagnostic test accuracy noted above. The second exr{ \/E (pz - t)

function, g(r), will introduce variation in precision solely o 3\ o,

due to differences in threshold, and the thigip, r, n,) Sensitivity = i (B4)
will introduce a direct correlation between precision and 1- exp{ 3(2—)

observed diagnostic accuracy. Sampling variability (mea- 02

surement error) in the standard error is a problem for regres-gng

sion tests of asymmetry. Both of the functiogé) and

h(g, r, ny) are also observed with measurement error.f{ing ex;{ \/E (ul - t)

n,) is observed with measurement error if diseased and i 3\ o

nondiseased groups are recruited as part of a cohort (but not Specificity = 1 — ey —t (B5)
if they are recruited separately), but will be small in most 1+ exp{\/g( oy

studies.

For the example case study in section 4, we highlighted  The standardized distance between the means determines
studies 4 and 13, whose location on the funnel plot the diagnostic accuracy of the test. Simulations were under-
changed substantially with choice of axes. We compute thetaken for five different levels of accuracyif— pj)/o, = 0



(DOR = 1, AUC = 0.50); {1, — py)/o1 = 1 (DOR = 6, AUC =
0.77); {42 — py)lo, = 2 (DOR = 38, AUC = 0.93); {1, —
/o, = 3 (DOR= 231, AUC= 0.98); and fi, — )/
0, = 4 (DOR = 1415, AUC= 0.996).
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