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Abstract

Background and Objective: Publication bias and other sample size effects are issues for meta-analyses of test accuracy,
randomized trials. We investigate limitations of standard funnel plots and tests when applied to meta-analyses of test accuracy
for improved methods.

Methods: Type I and type II error rates for existing and alternative tests of sample size effects were estimated and comp
simulated meta-analyses of test accuracy.

Results: Type I error rates for the Begg, Egger, and Macaskill tests are inflated for typical diagnostic odds ratios (DOR), when
prevalence differs from 50% and when thresholds favor sensitivity over specificity or vice versa. Regression and correlation tes
on functions of effective sample size are valid, if occasionally conservative, tests for sample size effects. Empirical evidence sugg
they have adequate power to be useful tests. When DORs are heterogeneous, however, all tests of funnel plot asymmetry have l

Conclusion: Existing tests that use standard errors of odds ratios are likely to be seriously misleading if applied to meta-ana
test accuracy. The effective sample size funnel plot and associated regression test of asymmetry should be used to detect public
and other sample size related effects.� 2005 Elsevier Inc. All rights reserved.

Keywords: Publication bias; Diagnostic test accuracy; Funnel plots; Systematic reviews; Meta-analyses; Sensitivity; Specificity
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1. Introduction

The validity of a systematic review depends on minimiz
ing bias in the identification of studies. If the studies tha
are included in a review have results that systematica
differ from relevant studies that are missed, then the findin
will be compromised by publication bias[1,2]. Systematic
reviewers are therefore advised to use comprehens
searches to attempt to locate all relevant studies[3–5].

In stark contrast to the substantial literature and empiric
evidence available for randomized controlled trials[1,6–
11], there has been little research into the determinan
magnitude, and impact of publication bias for studies o
diagnostic test accuracy. Recently, funnel plot analyses d
veloped for investigating publication bias in randomize
trials have been recommended[12] and used for reviews
of test accuracy[13,14]. Evidence that the performance of
these tests deteriorates as odds ratios increase raises con
that they may not be appropriate[15–17].
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Determinants of publication bias are likely to be differen
for investigations of test accuracy. The analysis of a stu
of test accuracy typically involves computation of estimate
of sensitivity and specificity (or possibly likelihood ratios)
together with 95% confidence intervals[18]. In contrast to
reporting of randomized trials, there is no stated null hyp
thesis or computation of an associatedP-value. Thus, pub-
lication bias is unlikely to be associated with statistica
nonsignificance.

Funnel plots can detect any effect that is related to sam
size. Publication bias is the most commonly cited sampl
size-related effect, but other factors such as study quality
the type of population mayalso be related tosample size. H
we explore theoretical issues that underpin the investigati
of any sample size effect for diagnostic tests and devel
funnel plots that are appropriate for reviews of test accura
Section2 reviews existing tests for funnelplot asymmetry a
considers how their performance is likely to be affected b
characteristics typical of studies of test accuracy. Section
introduces a new funnel plot and tests for asymmetry th
we apply, together with existing tests, to a case study
section 4. Through simulation, described in sections 5 a
6, we evaluate the performance of new and existing funn
plot–based tests for detecting publication bias, and estim
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the impact of publication bias on estimates of diagnost
accuracy. We base our investigations on the assumption t
the probability of publication decreases with lower value
of diagnostic accuracy, and investigate the impact of fou
possible selective publication mechanisms.

2. Theory and methods

2.1. Detection of publication bias and other sample
size effects using funnel plots

The funnel plot has been recommended as a graphi
device for investigating the possibility of publication bias
or other sample size effects for reviews of randomized co
trolled trials [19]. By plotting estimates of study findings,
usually the log odds ratio (lnOR), against their sample siz
or precision (estimated by the reciprocal of the standa
error), indirect evidence for bias can be discerned from th
shape of the plot. In the absence of a sample size effe
the points will form a symmetrical funnel shape around th
overall estimate of effect, points from small or low-precision
studies being more dispersed around the estimate of ove
effect than points from large or high-precision studies. Non
publication of small nonsignificant studies will cause a ga
in the plot and introduce asymmetry if there is a treatme
effect. Asymmetry may result from publication bias, but ca
also be caused by other so-called sample size effects, suc
clinical heterogeneity and variation in study quality if they
are also linked to sample size[20]. Various statistical tests,
notably Begg’s rank correlation[21], Egger’s regression test
[20], and Macaskill’s regression test[16], have been devised
to objectively assess asymmetry. If a funnel plot is asymme
ric, it can be deduced that some mechanism that lin
study results with sample size is present—but identifyin
the mechanism is not straightforward.

Song et al.[12] proposed that the funnel plot can also b
used for reviews of diagnostic test accuracy; they produc
funnel plots of log diagnostic odds ratio (lnDOR) agains
standard errors for 28 meta-analyses and applied the Be
and Egger tests for asymmetry. Depending on the criter
used, between 6 and 12 of these meta-analyses demonstr
significant funnel plot asymmetry. Meta-analyses that in
cluded fewer studies and searched fewer databases w
more likely to have asymmetrical plots.

2.2. Choice of horizontal axis for funnel plots
of diagnostic test accuracy

Various funnel plots can be constructed for dichotomou
data in a meta-analysis determined by the choice of t
measureofeffectandmeasureofprecision[22,23]. Sterneand
Egger[22] showed that plotting the lnOR against its stan
dard error is optimal for meta-analyses of trials, becau
the expected funnel shape would be pyramidal rather th
curvilinear and use of odds ratios or risk ratios minimize
unexplained heterogeneity.
at

l

-

t,

ll

t

as

-

d

g

ted

re

n

For diagnostic test reviews, the DOR summarizes te
accuracy as a single number and it is used routinely
summary receiver operating characteristic (ROC) meta-an
yses[24,25]. Separate funnel plots for sensitivity and spec
ficity (after logit transformation) are unlikely to be helpful
for detecting sample size effects, because sensitivities a
specificities will vary due to both variability of threshold
between the studies and random variability. Simultaneo
interpretation of two related funnel plots and two tests fo
funnel plot asymmetry also presents challenges. Hence,
restrict our investigation to funnel plots based on the lnDOR

2.3. Existing tests for sample size effects

The performance of a statistical test is based on assess
both type I and type II error rates. In the present context,
type I error occurs when the test result is statistically signi
cant but there is no sample size related effect. Type I erro
should occur with the same probability as theP-value that
defines statistical significance. Type I error rates that a
lower give overly conservative hypothesis tests; those th
are higher lead to false claims of sample size effects. Ty
II errors occur when the test is not statistically significan
despite existence of a sample size effect. The lower the ty
II error rate, the higher the statistical power to dete
sample size effects. Tests which have high power are p
ferred, provided their type I error rates are not inflated.

Begg and Mazumdar[21] proposed a test for publication
bias based on assessing the significance of the correlation
tween the ranks of effect estimates and the ranks of th
variances. The test involves standardizing the effect es
mates to stabilize the variances and performing an adjus
rank correlation test based on Kendall’sτ. It has been shown
to have low power and a conservative type I error ra
when used for dichotomous outcome data[15,16].

Egger et al.[20] proposed a test for funnel plot asymmetry
based on a regression of standardized effect estimates aga
precision (standard error, or SE), to test whether the inte
cept deviates from zero. Sterne et al.[15] showed that the
significance of the intercept in this model is equivalent t
the significance of the slope of a simpler inverse varianc
weighted regression of observed effect sizes against stand
error, and demonstrated that Egger’s approach may be m
powerful than the Begg test for detecting publication bia

Irwig et al.[26], however, expressed concern that Egger
regression approach is likely to be biased as the predic
(SE) in the regression model is measured with error, a
Macaskill, Walter, and Irwig[16] later demonstrated by sim-
ulation the existence of a correlation that inappropriate
inflated type I error rates when the OR differed from one
Macaskill et al.[16] proposed using study sample size (N
as a predictor variable in the inverse variance-weight
regression approach, and showed that it gave a mo
appropriate, if conservative, type I error rate. They also not
that computing regression weights as the inverse variance
the average prevalence (pooling samples and events ac
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the two groups) gave appropriate type I error rates whe
treatment effects were large, but that all approaches th
use total sample size as the explanatory variable have lo
statistical power.

The published evaluations of these three tests[15–
17,21,22]have concentrated on randomized controlled tria
scenarios where studies have equal numbers of treated a
control participants and treatment effects are small (odd
ratios are close to 1).

2.4. Issues in applying existing tests to diagnostic
accuracy meta-analyses

There are three particular characteristics of studies o
diagnostic test accuracy that can result in asymmetry fo
funnel plots that use standard error of the lnDOR or tota
sample size as a measure of precision, in the absence o
true underlying sample size related effect.

1. Values of DOR are typically very high, with the num-
bers of false positives or false negatives, or both, quit
often being small. The asymptotic standard error is a
biased estimate of the true standard error, with large
bias for smaller cell sizes, as occurs with larger DORs
and smaller studies[27].

2. The standard error of the lnDOR depends on the pro
portion that is test positive. Individual studies of test
evaluations often differ (either explicitly or implicitly)
in the diagnostic threshold used to define test positives
leading to variability in the proportion that are test
positive between studies.

3. Diagnostic studies commonly have unequal sampl
sizes in diseased and nondiseased groups, depend
on (a) whether they use a case-control or clinica
cohort design and (b) the prevalence of disease in th
sample. Unequal numbers of nondiseased (n1) and
diseased (n2) will reduce the precision of an estimate of
test accuracy for a given total sample size. Sampl
size related precision when there are unequal grou
sizes is more appropriately summarized by the effec
tive sample size ESS, where ESS� (4n1n2)/(n1 � n2).

The algebraic relationship between the standard error o
the lnDOR, effective sample size, proportion test positive
and the estimated DOR is expounded inAppendix A.
The Begg, Egger, and Macaskill tests all depend in som
way on the standard error of lnDOR, and Macaskill’s tes
also depends on total sample size.

3. A robust funnel plot and test for asymmetry suitable
for use with meta-analyses of diagnostic test accuracy

A funnel plot for studies of diagnostic test accuracy
should not display asymmetry if variation in the magnitude
of the DOR is due solely to sampling error and/or there is
t
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variation in test thresholds. InAppendix A, we show that
the SE of the lnDOR does not fulfill these criteria. The
only term to behave appropriately was the sample size depe
dent term,

�1

n1
�

1

n2

or (1/n1 � 1/n2)
1/2, which is equal to 2/ESS1/2. Consequently,

we propose that funnel plots for diagnostic test accurac
plot the lnDOR against 1/ESS1/2—or, equivalently, against
(1/n1 � 1/n2)

1/2, which is proportional to 1/ESS1/2.
Two obvious alternative tests for asymmetry follow as

(a) an adaptation of Begg’s rank correlation test, substitutin
1/ESS for the variance of the log odds ratio; (b) a regressio
of lnDOR against 1/ESS1/2, weighting by ESS. In section 5,
we evaluate the performance of these new tests and t
existing tests by simulation. First, however, we conside
the application of the tests in a case study.

4. Case study

Kearon et al.[28] reviewed the diagnostic accuracy of
noninvasive tests for detecting deep vein thrombosis. The
located 14 suitable studies comparing venous ultrasonog
phy in asymptomatic patients with venography (the refe
ence standard).

Three alternative funnel plots are presented inFig. 1plot-
ting lnDOR against (a) the standard error of the lnDOR
(b) the total sample size, and (c) the inverse of the square ro
of the effective sample size. For computation of the standa
error, addition of 0.5 was made to all cell counts for al
studies to avoid division by zero errors.

Regression lines are plotted as obtained from the Egg
[E(SE)],Macaskill [M(N)], and theproposedeffectivesample
size regression test [D(ESS)], respectively. Significance tes
indicate that asymmetry is evident in the standard error pl
(P � .006), borderline in the sample size plot (P � .10)
and not present in the effective sample size plot (P � .89).
Notably, the trend towards less precise studies giving high
values of diagnostic test accuracy evident in the Egger pl
is reversed in the subsequent two plots.

Examination of the points reveals that the locations o
studies 4 and 13 change between the three plots. The
two studies have the highest estimated DOR (318 and 1,13
and standard errors considerably larger than the other
trials (1.48 and 1.52, the next largest being 0.98). These tw
points are influential in the E(SE) test of asymmetry; whe
they are deleted, the test is of only borderline significanc
(P � .09).

Plots of lnDOR against N and 1/ESS1/2 reveal that, al-
though these studies have the highest standard errors, th
total sample sizes are above the median (ranked 4th and
out of 14) and effective sample sizes are ranked 6th an
9th. These changes in ranking render the regression te
nonsignificant or of only borderline significance. The high
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r E(SE),
Fig. 1. Funnel plots for a meta-analysis of venous ultrasonography to detect deep vein thrombosis in asymptomatic patients [28] using Egge
Macaskill M(N), and the effective sample size D(ESS) weighted regression tests of funnel plot asymmetry.
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standard errors of the lnDOR for studies 4 and 13 in the pre
ence of average sample sizes are likely to be due to these
studies having (a) the highest observed specificity (100%
indicative of a high test threshold, and (b) the highest DOR

Thus, the results of the Egger test may be explained
the estimates of standard error being overly influenced by t
extreme diagnostic threshold and high test accurac
Whether the nonsignificant result of the effective samp
size regression test D(ESS) is likely to be a correct findin
depends on the power of the test, which is evaluated in t
simulation studies described in sections 5 and 6.

5. Evaluation by simulation

Because one of the best-known sample size effects
publication bias, we evaluated the performance of existin
tests and the proposed new tests for sample size rela
effects through simulating meta-analyses of diagnostic te
with and without publication bias.

Simulations were undertaken in Stata version 8 (Stat
Corp, College Station, TX, USA). Each data set containe
results from 20 studies (k � 20). Sample sizes were rede-
fined for each simulation and varied betweenn � 20 and
n � 2,000 (randomly sampled from a uniform distribution)

Using an underlying prevalencep, each study was ran-
domly divided into diseased and nondiseased groups an
value of a continuous diagnostic measure,θ, randomly sam-
pled for each individual from logistic distributions as shown
in Fig. 2, with means and standard deviations ofµ1 andσ1

for nondiseased andµ2 and σ2 for diseased (whereµ2 ≥
µ1). A diagnostic thresholdt was defined for each study and
test results declared positive ifθ � t and negative if
θ ≤ t. Participants in each study were classified as havin
true positive, false negative, false positive and true negati
diagnoses as indicated inFig. 2, with the DOR, sensitivity,
and specificity computed as explained inAppendix B.
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5.1. Parameters varied in simulation

The base scenario considered distributions for diseas
and nondiseased created using the same standard devia
(σ1 � σ2 � σ), and fixing the threshold parameter halfway
between the means of the distributions—that is, wit
t � (µ1 � µ2)/2—such that sensitivity� specificity. The
prevalencep was set at 0.5. From this base scenario, varia
tions to parameter values were made as follows.

1. The thresholdt was increased in steps of 0.5σ1 from
the average of the means up to 2σ1 above the average
of the means.

2. The thresholdt was randomly chosen from a uniform
distribution for each study with ranges of between
0.5σ1 and 2σ1. Symmetry of the threshold around the
average of the means was relaxed.

3. Prevalencep of disease took values of 50%, 40%,
30%, 20%, 10%, and 5%.

4. The prevalencep was randomly chosen from a uni-
form distribution for each study. Values were chose
from the ranges 40%–50%, 30%–50%, 20%–50%
10%–50%, and 5%–50%.

5. Heterogeneity in diagnostic accuracy was introduce
by adding a valueτ to the difference between the
meansµ2 � µ1 for each study. The value ofτ was
sampled from a normal distribution with zero mean
and standard deviation 0.1σ1, 0.2σ1, or 0.3σ1.

6. The variability of the diagnostic measure in the dis
eased was increased to 2σ1 introducing asymmetry
into the shape of the ROC curve.

Results are reported only for DOR of 1, 38, and 231
and only for the selection of the parameter combination
necessary to demonstrate key findings. Uniform distribu
tions were used to introduce random specifications for desig
features (threshold, prevalence, sample size) for which th
investigator has control, and normal distributions used othe
wise (for heterogeneity in diagnostic accuracy).



J.J. Deeks et al. / Journal of Clinical Epidemiology 58 (2005) 882–893886

ve.
Fig. 2. Underlying bilogistic distribution model used in the simulations.Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP, true positi
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5.2. Methods used to introduce publication bias

A one-sided censoring mechanism, adapted from t
function used by Begg and Mazumdar[21], was used to
introduce differing degrees of publication bias. The probab
ity of selection of a study for inclusion in a meta-analysis i
given by a weight functionw(λi) � exp[�β(1 � λi)

α], where
λi is a measure of diagnostic accuracy (Fig. 3). Studies
were included if a random number drawn from a [0,1) un
form distribution was less thanw(λi). Studies continued to
e

be sampled until 20 studies had been included in each me
analysis, the number censored in the process being note

Four alternative measures were considered forλi: sensi-
tivity, specificity, square root of Youden’s index (sensitiv
ity � specificity � 1), and the square of the area unde
the ROC curve (AUC). Transformations for the last tw
parameters were chosen empirically to achieve simil
proportions being censored as with comparable values
sensitivity and specificity. The AUC was used as a measu
of overall diagnostic accuracy, rather than the DOR
Fig. 3. Publication bias censoring functions based on the Begg and Mazumdar weight function [21]..
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because of the convenience of it taking values between 0
and 1, similar to the values of the other three measures
diagnostic accuracy. The valueα was fixed at 2.5. Values
of β that censored 10%, 25%, and 50% for each of the fou
accuracy parameters were identified empirically.

5.3. Number of simulations

To give adequate precision for estimating empirical type
I error rates, 10,000 simulations were undertaken for eac
combination of parameters The standard errors for estimat
of event rates of 2.5%, 5%, and 10% are 0.16%, 0.22%, an
0.30%, respectively.

5.4. Assessment of the impact of publication bias
and performance of tests for funnel plot asymmetry

Type I error rates were assessed from simulations witho
study censoring for the following five tests of funnel plot
asymmetry:

1. B(SE), rank correlation of lnDOR with var(lnDOR)
(Begg and Mazumdar[21]);

2. E(SE), regression of lnDOR with SE(lnDOR)
weighted by inverse variance lnDOR (Egger et al
[20]);

3. M(N), regression of lnDOR withn weighted by inverse
variance lnDOR (Macaskill et al.[16]);

4. D(ESS), regression of lnDOR with 1/ESS1/2 weighted
by effective sample size; and

5. B/D(ESS), rank correlation of lnDOR with 1/ESS.

For diagnostic accuracy reviews, we would expect th
probability of publication to be higher for higher diagnostic
accuracies. Thus, we have presented the performance of te
for asymmetry using one-sided 2.5% and 5% significanc
tests, as well as the more conventional two-sided 5% an
10% tests.

Type I error rates were estimated in simulations wher
no censoring was present. The proportions statistically sig
nificant at 2.5% and 5% levels in each tail were compare
with nominal 2.5% and 5% significance levels. Statistica
power was measured in simulations where censoring d
occur. The proportion of tests for funnel plot asymmetry
significant at 5% and 10% two-tailed levels were noted.

Two approaches were used for meta-analysis. Separa
estimates of sensitivity and specificity were obtained b
computing weighted averages of logit sensitivity and logi
specificity using inverse variance weighting. An estimate
of the average DOR was obtained from the Moses SRO
regression model[24]. An unweighted analysis was used,
as recommended by Irwig et al.[29], and was noted to give
estimates close to those predicted from the chosen parame
values when no publication bias was present. The impa
of publication bias was assessed by comparing results
meta-analyses where censoring did occur with results with
out study censoring, as well as with the theoretical resu
.5
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expected from the specified parameter values. The impac
publication bias on statistical power was assessed in simu
tions with parameter values chosen to be characteristic
a meta-analysis with underlying variation in diagnost
threshold. Studies were generated with an average D
of 38 (µ2 � µ1 � 2σ), with diagnostic thresholds varying
uniformly over 2σ betweenµ1 andµ2, with the proportion
diseased varying uniformly between 10% and 50% and t
variance of the diagnostic marker equal in diseased a
nondiseased. Simulations were first undertaken with no h
erogeneity in test accuracy, but then with increasing degre
of heterogeneity generated by introducing a random effe
with standard deviations up to 0.3σ.

6. Results

6.1. Type I error rates

Empirical type I error rates for the base scenario and
selection of parameter combinations are shown inFig. 4. In
the base scenario with a DOR of one, a diagnostic thresh
set so that sensitivity� specificity, and with equal numbers
of diseased and nondiseased (Fig. 4, row 1, column 1),
all tests achieve empirical type I error rates close to t
nominal 2.5% and 5% values in both tails, although rat
for the rank correlation tests B(SE) and B/D(ESS) are a lit
low. The percentage significant at the two-tailed 5% (10%
levels are: E(SE) 4.7% (10.0%), M(N) 5.3% (10.0%
D(ESS) 4.8% (10.1%), B(SE) 3.8% (8.9%), an
B/D(ESS) 3.7% (8.9%).

6.2. Impact of increasing diagnostic accuracy

Increasing diagnostic accuracy adversely affected the p
formance of B(SE), E(SE), and M(N), but had little impac
on the D(ESS) and B/D(ESS) tests (Fig. 4, column 1). Two-
tailed type I error rates were reasonable for all tests, but ty
I error rates for one-tailed tests were not. At a DOR of 23
the proportions in the left tail at the 2.5% (5%) levels wer
nearly twice their nominal level: (E(SE) 5.3% (10.2%), M(N
5.5% (9.9%), and B(SE) 4.8% (9.5%). The ESS-based
gression test D(ESS) had more appropriate proportions s
nificant of 2.1% (4.2%); the Begg ESS-based test B/D(ES
behaved conservatively, with only 1.5% (3.6%) significan

Where variation in other simulation parameters intro
duced poor performance for particular tests, the proble
almost always were magnified with increasing diagnos
accuracy.

6.3. Impact of threshold selection

Type I error rates were increased for E(SE), M(N), an
B(SE) when the threshold differed from the sensitivity�
specificity value and when the DOR was greater than
The values inFig. 4, column 2 are based on positioning th
threshold a distanceσ1 above the average of the mean
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% tails;
Fig. 4. Empirical type I error rates for five tests of funnel plot asymmetry: B(SE), E(SE), M(N), D(ESS), and B/D(ESS). White boxes indicate 2.5
black boxes indicate 5% tails; vertical lines indicate nominal positions of tails. The five tests are explained in section 5.4.
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of the distributions, equivalent to fixing sensitivities at 50
and 71% and specificities at 97% and 99%, for DORs of
and 231, respectively.

Proportions significant at the two-tailed 5% (10%) typ
I error rates for Egger’s test E(SE) were highly inflated
13.1% (21.4%) and 25.0% (37.2%) for DORs of 38 an
231. In contrast, the ESS-based regression test D(ESS) m
tained 5% (10%) type I error rates of 4.1% (8.8%) and 3.9
(8.1%), close to the nominal values, although the distribut
of results became slightly asymmetric in the two tails
DORs increased.

Values inFig. 4, column 3, display empirical type I erro
rates for simulations where a different threshold was selec
for each study from a range between the average of the me
and σ1 above the average of the means. The same pat
of inappropriately increased type I error rates for E(SE
B(SE), and M(N) was evident, although error rates are
smaller magnitude: the average threshold is onlyσ1/2 above
the average of the means.

6.4. Impact of disease prevalence

Decreasing the proportion of diseased in the sam
caused problems for all non-ESS-based methods, with
ceptionally high and asymmetric empirical type I probabi
ties (Fig. 4, column 4). The problems increased when t
8

d
in-

n
s

ed
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rn

),
f
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percentage diseased decreased and DOR increased. W
only 5% of study participants were diseased, proportion
significant at the 5% (10%) type I error rates for a DOR o
231 were 33.9% (46.5%) for E(SE), 16.5% (26.3%) fo
M(N), and 15.8% (26.7%) for B(SE). Although the effective
sample size tests had more appropriate type I error rates
3.6% (7.8%) for D(ESS) and 3.2% (7.6%) for B/D(ESS), th
distributions were asymmetric, the proportions significant
the 2.5% (5%) level in the left tail being only 0.3% (0.8%)
for the D(ESS) and 0.5% (1.3%) for the B/D(ESS).

Values inFig. 4, column 5, represent type I error rates
for simulations where a different disease prevalence of b
tween 5% and 50% was selected for each study in the me
analysis, the average prevalence being 22.5%. The sa
pattern of inflated type I error rates for E(SE), B(SE), an
M(N) was evident, although type I error rates were onl
approximately double their nominal significance levels. Th
asymmetry for D(ESS) and B/D(ESS) was evident a
more extreme disease prevalences.

6.5. Impact of heterogeneity in diagnostic accuracy

Underlying diagnostic accuracy was varied between stu
ies in a meta-analysis by introducing a random effect wit
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a normal distribution. Introduction of the random effect a
fected E(SE), B(SE), D(ESS), and B/D(ESS) even when t
average DOR wasequal to one. Type I errors for the Eggera
Begg methods became inflated, and ESS-based meth
became conservative.

Column 6 ofFig. 4 shows results when a large random
effect with a standard deviation of 0.3σ1 is introduced. For
a DOR of 38, a decrease of 0.3σ1 in the difference between
the means causes the DOR to drop to 13, and an incre
of 0.3σ1gives a DOR of112. Fora DORof 231, theequivale
figures are 78 to 685. Type I error rates are excessive
E(SE) and B(SE), whereas the ESS-based tests become
servative. For a DOR of 231, the proportion significant
5% (10%) significance levels are 24.4% (38.1%) for E(SE
13.0% (23.0%) for B(SE), 1.5% (4.3%) for D(ESS), and 1.7
(4.9%) for B/D(ESS). For Macaskill’s sample size–base
test M(N), the empirical type I error rate was 7.1% (13.0%

6.6. Impact of asymmetry in the SROC (DOR related
to threshold)

Doubling the standard deviation of the distribution o
diseased participants has the effect of introducing asymme
into the shape of the underlying ROC curve such that t
DOR changes with threshold. There was no addition
impact of having an underlying asymmetric ROC when th
threshold was fixed or varied between studies (data n
shown).

6.7. Impact of publication bias on estimates
of diagnostic test accuracy

Figure 5depicts four illustrative meta-analysis datase
created by simulation with an underlying DOR of 38 wit
variation in threshold, disease prevalence and accuracy
troduced by a random effect with standard deviation
0.3σ1). Studies have been censored using the four alterna
publication bias mechanisms. Open circles indicate miss
studies; these are distributed as would be expected
cording to the censoring mechanism. Censoring remov
between 5 and 12 studies in each plot; censoring on sens
ity removed studies with low sensitivity, censoring on spec
ficity removed studies with low specificity, censoring usin
Youden’s index removed studies with either low sensitivi
or low specificity, and AUC-based censoring removed stu
ies beneath the ROC curve with lower DOR. Despite t
censoring, changes in the estimated summary ROC curve
perficially appear small.

Average meta-analytical estimates of sensitivity, spe
ficity, and DOR according to degree of censoring are giv
in Table 1. These are based on simulations with the sam
parameter values as inFig. 5, with and without heterogeneity
in DOR. For the Moses SROC regression model estima
of DOR, censoring of≤50% of studies appeared to make onl
a modest difference in test accuracy, regardless of
censoring mechanism used. Censoring on the DOR (throu
values of the AUC) introduced the largest bias, increasi
-
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the DOR from 37 to 53 when 50% of studies were exclude
In practical application, this change is small: the summa
ROC curve for a DOR of 53 passes through the sensit
ity � specificity� 88% point compared to sensitivity�
specificity� 86% point for a DOR of 37. Notable bias is
introduced, however, when separate meta-analytical e
mates are computed for sensitivity and specificity if th
censoring mechanism acts unequally on sensitivity a
specificity.

6.8. Statistical power

The statistical power of 10% two-sided tests for funne
plot asymmetry is shown inFig. 6 for simulations created
using the same parameters as inFig. 5, without and with
heterogeneity in DOR (including a random effect of 0.2σ1).

Although the Egger E(SE) and Begg B(SE) tests sho
the greatest power for detecting publication bias, the inflat
type I error rate of these tests is evident in the values
power being above the nominal two-sided 10% level whe
they intersect the true value of the DOR. The proposed ES
based regression D(ESS) and rank correlation B/D(ES
tests show reasonable power when there is no heterogen
in DOR, the regression test outperforming the correlatio
test. When test accuracy varies with a random effect
well as through sampling variability, the power of all test
rapidly dissipates.

7. Discussion

We found that a funnel plot can be used to identify
sample size related effect such as that caused by publica
bias in reviews of diagnostic test accuracy. The Begg, Egg
and Macaskill tests of funnel plot asymmetry used for RCT
are, however, likely to be seriously misleading if applied i
typical diagnostic test scenarios. DORs usually take valu
well above one, test thresholds often preferentially fav
sensitivity over specificity (or vice versa), there are usual
fewer diseased than nondiseased, and heterogeneity in
accuracy is common. We have shown algebraically and
simulation how the approximate asymptotic standard err
of the log odds ratio is affected by these phenomena a
how they cause the Begg, Egger, and Macaskill tests
overestimate the frequency of sample size related effect

We propose that systematic reviewers should underta
funnel plot investigations to examine the possibility of publi
cation and other sample size related effects using plots
lnDOR against 1/ESS1/2, and test for asymmetry using re-
lated regression or rank correlation tests. We have sho
that these tests are robust to features characteristic of stu
of diagnostic test accuracy, and that the regression t
has greater power to detect publication bias than the ra
correlation test. Our observation of lower power for th
correlation test is consistent with findings from previou
studies[14,16].
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Fig. 5. Impact of publication bias on an example simulated meta-analyses. Censored studies indicated by open circles. The dashed line indicateROC
curve estimated from the published studies, the solid line indicates the summary ROC curve estimated from all studies. DOR/AUC indicates cen
the diagnostic odds ratio through values of the area under the ROC curve.
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Table 1
Estimates of the effects of publication bias on meta-analytical
estimates of test accuracy

Censored on

Measure Sensitivity Specificity Youden’s index DOR/AUC

0% censored
DOR 37 37 37 37
Sensitivity, % 87 87 87 87
Specificity, % 86 86 86 86

10% censored
DOR 38 38 39 40
Sensitivity, % 89 85 87 87
Specificity, % 84 88 86 87

25% censored
DOR 40 40 41 44
Sensitivity, % 91 82 88 88
Specificity, % 81 90 87 87

50% censored
DOR 44 46 46 53
Sensitivity, % 94 75 88 90
Specificity, % 75 94 87 88

Diagnostic odds ratio (DOR) estimated from an unweighted Mose
summary receiver operating characteristics (SROC) regression model. S
sitivity estimated as the inverse variance-weighted average of logit sensit
ties. Specificity estimated as the inverse variance-weighted average of lo
specificities. DOR/AUC indicates censoring on the diagnostic odds ra
through values of the area under the ROC curve.
s
n-
i-
git
o

The problems we have identified with the approxima
asymptotic standard error of the log odds ratio also affe
the use of inverse variance study weights for meta-analytic
pooling and meta-regression investigations when DORs a
very much greater than one. Effective sample size–bas
weights may offer a preferable alternative.

Our simulations also suggest that, if meta-analysis
based on estimation of a DOR, the impact of publicatio
bias on estimates of DOR is unlikely to be large; howeve
selective publication may seriously affect estimates of sen
tivity and specificity. These findings were shown to be vali
for varying degrees of publication bias and for differen
selection mechanisms. The evaluation of the impact of ce
soring 50% of studies was based on simulations where stu
results were very variable and the censoring function to
a particularly steep form, which are conditions for the impa
of publication bias to be strong. Further empirical wor
needs to be undertaken to better understand the determin
and magnitude of publication bias for diagnostic accura
studies.

Notably, we have shown that the power of all statistica
tests of funnel plot asymmetry decreases when the DO
varies more than expected by chance in a way that is n
associated with sample size. The proportion of the to
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Fig. 6. Empirical power of tests for funnel plot asymmetry.
t
n
ly

o
o
d

t
r

e
iv
a
t
g
e
n
c
c
i
e
r
c
la

t

ry

s
p
s
r
s

ing

ts
n
lth
to

is
rch

r of
n-
tor
se

er
to
variability that is attributable to sampling variability de-
creases as heterogeneity increases. In situations where s
ies have highly variable results, the chances of detecti
variability in accuracy associated with sample size are like
to be low.

Funnel plot analyses show asymmetry for a variety
reasons other than publication bias, including the type
population studied and poor study quality, if they are linke
both to sample size and observed diagnostic accuracy[30];
however, the likely direction of the relationships is no
always clear. Whereas for trials smaller studies are mo
likely to have larger effects due to poor methodologica
quality, in diagnostic research it is possible that the larg
studies are of poorer quality. For, example large retrospect
studies in which investigators obtain test results from clinic
databases may be more biased than smaller prospective s
ies in which clinicians carefully recruit patients presentin
with a specific clinical problem. Larger studies may also b
more prone to verification bias, if adequate resources are
available to correctly ascertain the gold standard referen
diagnosis on all participants. Real differences in test accura
between participant groups will also induce asymmetry
they are linked to sample size. For RCTs, sample siz
are usually smaller for groups in which treatment effects a
expected to be large[31]. Because the design of diagnosti
test accuracy studies does not usually involve power calcu
tions for testing hypotheses, it is not clear that the sam
relationship would be as evident. Constructing funnel plo
using different symbols and colors to denote key study cha
acteristics may assist in eliciting likely causes of asymmet

In summary, we have shown that funnel plot investiga
tions based on the standard error of the lnDOR are seriou
misleading. We recommend instead using effective sam
size–based funnel plots and associated regression test
asymmetry. The impact of this change in funnel plot structu
is likely to be high. Applying the proposed regression te
to the 28 reviews identified by Song et al.[12], only 3 show
ud-
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significant (P � .10) funnel plot asymmetry, compared to
12 using the Egger test, 5 using the Begg test, and 8 us
the Macaskill test.
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Appendix A

Relationship of standard error with diagnostic
odds ratio, threshold, and sample size

To assess the mechanism by which the standard erro
the log-diagnostic odds ratio, or SE(lnDOR), operates, co
sider the re-parameterization of the asymptotic estima
(where TP is true positive, FN is false negative, FP is fal
positive, and TN is true negative)

SE(lnDOR)� � 1

TP
�

1

FN
�

1

FP
�

1

TN
(A1)

using the termsφ� DOR � (TP × TN)/(FP × FN);
n1 � number not diseased� TN � FP; n2 � number dis-
eased� TP� FN; andr � odds of testing negative in the
nondiseased� TN/FP. Recall that variation inr between
studies in a meta-analysis reflects variation in the numb
testing positive due to differences in the threshold used
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define test positive. This yields the following equation:

SE (ln DOR)� (A2)

�( 1

n1
�

1

n2
) (r �

1

r
� 2) � (φ�1

n2
) (1r �

r

φ)
The three functions contained in this equation have t

following three properties.
First, the sample size dependent term:

f(n1,n2) �
1

n1
�

1

n2
�

n1 � n2

n1n2
(A3)

The standard error inversely relates to effective samp
size (4n1n2)/(n1 � n2), appropriately reflecting unequal num
bers in diseased and nondiseased groups.

Second, the proportion testing positive dependent ter

g(r) � r � (1/r) � 2 (A4)

The standard error is minimized when the numbers
true negatives and false positives are equal (r � 1). For fixed
values ofn1 andn2, shifting the threshold changesr and alters
the standard error in a multiplicative manner.

Third, the DOR dependent term:

h(φ,r,n2) � (φ� 1

n2
) (1r �

r

φ) (A5)

� (φ� 1

n2
) (FP

TN
�

FN

TP)
The standard error is increased or decreased accordin

an additive term dependent on the DOR. The term
zero when DOR� 1 (i.e., for a test with no diagnostic value)
and in the special case when sensitivity and specificity a
equal. For a fixed value ofr, the term is positive if sensitivity
is greater than specificity and negative otherwise. The ma
nitude of the term decreases with increasing numbers
diseased.

Thus, of the three functions, only the first,f(n1, n2), oper-
ates appropriately under the three characteristics of me
analyses of diagnostic test accuracy noted above. The sec
function, g(r), will introduce variation in precision solely
due to differences in threshold, and the thirdh(φ, r, n2)
will introduce a direct correlation between precision an
observed diagnostic accuracy. Sampling variability (me
surement error) in the standard error is a problem for regr
sion tests of asymmetry. Both of the functionsg(r) and
h(φ, r, n2) are also observed with measurement error. Thef(n1,
n2) is observed with measurement error if diseased a
nondiseased groups are recruited as part of a cohort (but
if they are recruited separately), but will be small in mos
studies.

For the example case study in section 4, we highlight
studies 4 and 13, whose location on the funnel pl
changed substantially with choice of axes. We compute t
e
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standard error and its termsf(n1, n2), g(r), andh(φ, r, n2) are

SE (ln DOR)��f(n1, n2)g(r) � h(φ, r, n2) (A6)

This calculates as [(0.052× 249.00)� 10.65]1/2 � 1.48
for study 4 and as [(0.045× 211.00)� 7.26]1/2 � 1.52 for
study 13.

It therefore appears that for these two studies the observ
high threshold dominates the computation of SE (from com
parison of the values ofg(r) of 249 and 211 with the minimal
value ofg(r) of 4). The DOR dependent termh(φ, r, n2) is
also large, but is negative because the specificity is high
than sensitivity.

Appendix B

Computation of diagnostic odds ratio, area under
the curve, sensitivity, and specificity

For fixed values ofµ1, µ2, σ1, σ2, and t, the underlying
value of the diagnostic odds ratio (DOR) for the simulation
can be calculated as

DOR � exp[�π2

3 (µ2 � t

σ2
�

µ1 � t

σ1
)] (B1)

which simplifies to

DOR � exp[�π2

3 (µ2 � µ1

σ )] (B2)

whenσ1 � σ2 � σ, and is independent of the threshold,t.
For this simplified situation, the equivalent area under th
curve (AUC) can be computed using a formula from
Walter [32]:

AUC �
DOR

(DOR � 1)2
[(DOR � 1) � ln DOR]

(B3)

The underlying sensitivity and specificity can be obtaine
as follows.

Sensitivity�

exp[�π2

3 (µ2 � t

σ2
)]

1 � exp[�π2

3 (µ2 � t

σ2
)] (B4)

and

Specificity� 1 �

exp[�π2

3 (µ1 � t

σ1
)]

1 � exp[�π2

3 (µ1 � t

σ1
)]

(B5)

The standardized distance between the means determi
the diagnostic accuracy of the test. Simulations were unde
taken for five different levels of accuracy: (µ2 � µ1)/σ1 � 0
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(DOR� 1,AUC� 0.50); (µ2� µ1)/σ1 � 1 (DOR� 6,AUC�
0.77); (µ2 � µ1)/σ1 � 2 (DOR� 38, AUC� 0.93); (µ2 �
µ1)/σ1 � 3 (DOR� 231, AUC� 0.98); and (µ2 � µ1)/
σ1 � 4 (DOR� 1415, AUC� 0.996).
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