[R-meta] Calculating effect sizes from standardized regression coefficients in Metafor
Wolf, Katrin
k@tr|n@wo|| @end|ng |rom un|-b@mberg@de
Thu Jul 13 08:44:46 CEST 2023
Dear Wolfgang,
Thank you very much for your response! Please let me summarize to check if I understood correctly. As I could also see from the correspondence with Rasheda, there are two possible ways for dealing with regression coefficients:
1. Using escalc with "PCOR" (under consideration of t-statistics, sample size, number of predictors and variance explained)
2. directly meta-analyze beta coefficients as effect size (yi) in one of the rma-commands. In this case vi would be variance of beta coefficient meaning square of SE?
(I am going to check the paper you mentioned regarding the standard errors.)
Is one of these approaches better than the other - considering the fact that I aim at aggregating effect sizes from different kind of measures: regression coefficients, correlation coefficients (Fisher’s r-to-z transformed correlation coefficient) and group mean differences (standardized mean difference)?
Best,
Katrin
-----Ursprüngliche Nachricht-----
Von: Viechtbauer, Wolfgang (NP) <wolfgang.viechtbauer using maastrichtuniversity.nl>
Gesendet: Mittwoch, 12. Juli 2023 16:57
An: R Special Interest Group for Meta-Analysis <r-sig-meta-analysis using r-project.org>
Cc: Wolf, Katrin <katrin.wolf using uni-bamberg.de>
Betreff: RE: Calculating effect sizes from standardized regression coefficients in Metafor
Dear Katrin,
I am not sure I fully understand your question. I think you are referring to escalc() with measure "PCOR", which calculates partial correlation coefficients (from things like the corresponding t-statistics of the regression coefficients), but your phrasing (that this "calculates effect size from partial correlations") is confusing me.
If you want to meta-analyze standardized regression coefficients and have the corresponding standard errors, then one can of course also meta-analyze those directly. However, note that the standard errors of standardized regression coefficients are typically not computed in the most accurate way (i.e., the standard errors one obtains by fitting a regression model to standardized variables ignore that the variances used to standardize the variables are estimated). See, for example:
Jones, J. A., & Waller, N. G. (2013). Computing confidence intervals for standardized regression coefficients. Psychological Methods, 18(4), 435-453. https://doi.org/10.1037/a0033269
If you have the full correlation matrix of the variables in each regression model, one can compute more appropriate standard errors, but this is unlikely to be the case in practice.
Best,
Wolfgang
>-----Original Message-----
>From: R-sig-meta-analysis
>[mailto:r-sig-meta-analysis-bounces using r-project.org] On Behalf Of Wolf,
>Katrin via R-sig-meta-analysis
>Sent: Tuesday, 11 July, 2023 12:33
>To: r-sig-meta-analysis using r-project.org
>Cc: Wolf, Katrin
>Subject: [R-meta] Calculating effect sizes from standardized regression
>coefficients in Metafor
>
>Dear colleagues,
>
>I am currently struggling with dealing with standardized regression
>coefficients (as indicator of the relationship between two variables of
>interest) in my meta- analysis with Metafor. Due to literature
>research, standardized regression coefficients can be used for
>meta-analysis when corresponding standard errors are also taken into
>account. Due to Metafor manual from 2023, it is possible to calculate
>effect size from partial correlations under consideration of t-
>statistics, sample size, number of predictors in regression model and R^2. Do I interpret correctly that this is another approach?
>I am sure there is a lot of experience with handling beta weights in
>Metafor. I would appreciate any information on this topic.
>
>Kind regards,
>Katrin
>
>---
>Dr. Katrin Wolf, Dipl.-Psych.
>Wissenschaftliche Mitarbeiterin
>
>Otto-Friedrich-Universit t Bamberg
>Lehrstuhl Fr hkindliche Bildung und Erziehung
>96045 Bamberg
More information about the R-sig-meta-analysis
mailing list