[R-meta] Additional Info: Pairwise moderator testing in multilevel meta-analysis with CRVE / CIs
Röhl, Sebastian
@eb@@t|@n@roeh| @end|ng |rom un|-tueb|ngen@de
Fri Feb 10 09:50:21 CET 2023
Hi all,
Just an addition to my question from yesterday:
Additionally to using the robust() and anova() function, I also tried out Wald_test() from the clubSandwich packacke.
The results are the same (with F instead of T statistics):
> Wald_test(out_3, constraints = constrain_pairwise(1:3), vcov="CR2")
$`out_acad - out_intg`
test Fstat df_num df_denom p_val sig
HTZ 4.14 1 10.9 0.0669 .
$`out_socem - out_intg`
test Fstat df_num df_denom p_val sig
HTZ 0.225 1 13.2 0.643
$`out_socem - out_acad`
test Fstat df_num df_denom p_val sig
HTZ 18.7 1 9.6 0.00165 **
Can anybody help me?
Thank you.
All the best,
Sebastian
-----Ursprüngliche Nachricht-----
Von: R-sig-meta-analysis <r-sig-meta-analysis-bounces using r-project.org> Im Auftrag von Röhl, Sebastian via R-sig-meta-analysis
Gesendet: Donnerstag, 9. Februar 2023 12:30
An: r-sig-meta-analysis using r-project.org
Cc: Röhl, Sebastian <sebastian.roehl using uni-tuebingen.de>
Betreff: [R-meta] Pairwise moderator testing in multilevel meta-analysis with CRVE / CIs
Hi,
I have the following problem:
I am conducting a multilevel meta-analysis using metafor with cluster robust variance estimation and want to test the moderating effect of different kinds of outcomes. Additionally I want to test whether the several outcomes differ significantly from each other.
Here is an example:
out_3 <- rma.mv(zr, V=var, random = ~ 1| Sample_ID / number, mods = ~ -1 + out_intg + out_acad + out_socem,
data = data_int)
out_3_rob <- robust(out_3, Sample_ID, clubSandwich = T) anova(out_3_rob, X=rbind(c(-1,1,0),c(-1,0,1), c(0,-1,1)))
The robust model result shows C.I. that overlap.
Model Results:
estimate se¹ tval¹ df¹ pval¹ ci.lb¹ ci.ub¹
out_intg 0.2302 0.0231 9.9484 30.84 <.0001 0.1830 0.2773 ***
out_acad 0.1646 0.0220 7.4677 17.36 <.0001 0.1182 0.2111 ***
out_socem 0.2458 0.0278 8.8510 22.27 <.0001 0.1882 0.3034 ***
BUT the anova results show significant differences between 2 outcomes:
Hypotheses:
1: -out_intg + out_acad = 0
2: -out_intg + out_socem = 0
3: -out_acad + out_socem = 0
Results:
estimate se tval df pval
1: -0.0655 0.0322 -2.0349 10.92 0.0669
2: 0.0157 0.0330 0.4742 13.21 0.6431
3: 0.0812 0.0188 4.3264 9.60 0.0016
Do I have a thinking error here about the ANOVA or is this pairwise testing not possible with the CRVE-results?
Perhaps I am also interpreting the C.I.s incorrectly? If I calculate a pairwise comparison with the non-robust model, I also get significant difference although also the non-robust C.I. overlap.
Thank you very much for your help!
Best,
Sebastian
****************************
Dr. Sebastian Röhl
Eberhard Karls Universität Tübingen
Institute for Educational Science
Tübingen School of Education (TüSE)
Wilhelmstraße 31 / Room 302
D-72074 Tübingen
Germany
Phone: +49 7071 29-75527
Fax: +49 7071 29-35309
Email: sebastian.roehl using uni-tuebingen.de<mailto:sebastian.roehl using uni-tuebingen.de>
Twitter: @sebastian_roehl @ResTeacherEdu
[[alternative HTML version deleted]]
_______________________________________________
R-sig-meta-analysis mailing list @ R-sig-meta-analysis using r-project.org To manage your subscription to this mailing list, go to:
https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis
More information about the R-sig-meta-analysis
mailing list