[R-meta] Three-level meta-analysis with different sources of dependency
James Pustejovsky
jepu@to @end|ng |rom gm@||@com
Tue Feb 7 18:54:23 CET 2023
Hi Wilma,
Combining the multi-level meta-analytic approach with RVE is one fairly
low-effort way to address the concern of dependent effect sizes. As far as
implementation, it is simply a matter of running the model results through
the robust() function in metafor. Here's an example, elaborating on the
script you linked to:
# Create multilevel meta-analytic object for overall pooled effect
overall <- rma.mv(yi, vi,
data = df,
level = 95,
method = "REML", # tau-squared estimator
slab = author_year, # study label
tdist = TRUE, # apply Knapp-Hartung adjustment for our
confidence intervals
random = list(~ 1 | study_id,
~ 1 | esid)) # account for dependency in
the data
overall_robust <- robust(overall, cluster = study_id, clubSandwich = TRUE)
summary(overall_robust)
Here's an alternate syntax, using R's pipe operator:
# Create multilevel meta-analytic object for overall pooled effect
overall <- rma.mv(yi, vi,
data = df,
level = 95,
method = "REML", # tau-squared estimator
slab = author_year, # study label
tdist = TRUE, # apply Knapp-Hartung adjustment for our
confidence intervals
random = list(~ 1 | study_id,
~ 1 | esid)) |>
robust(cluster = study_id, clubSandwich = TRUE)
summary(overall)
With either syntax, you'll need to specify the cluster = argument to tell
metafor the level at which to cluster the robust variance estimator.
Setting clubSandwich = TRUE provides small-sample adjustments that have
better performance characteristics when the number of clusters is limited.
A further step would be to implement the correlated-and-hierarchical
effects working model rather than the multi-level meta-analysis (which, as
you noted, assumes independent effect size estimates within studies). The
idea here is to create an approximate sampling variance-covariance matrix
for the effect size estimates, to acknowledge that there is some dependence
in them, even if we're unsure about the exact degree of dependence. You can
implement this using metafor's vcalc() function. Here's a basic example,
assuming a correlation of .6 between effect size estimates from the same
study:
V <- vcalc(vi, cluster=study_id, obs=esid, data=df, rho=0.6)
Once you've got the V matrix, you feed it into the V argument of rma.mv()
as follows:
overall <- rma.mv(yi = yi, V = V,
data = df,
level = 95,
method = "REML", # tau-squared estimator
slab = author_year, # study label
tdist = TRUE, # apply Knapp-Hartung adjustment for our
confidence intervals
random = list(~ 1 | study_id,
~ 1 | esid)) |>
robust(cluster = study_id, clubSandwich = TRUE)
summary(overall)
You noted a potential concern that the reason for dependence differs from
study to study, which suggests that assuming the same level of correlation
(e.g., rho = .6) isn't very plausible. The vcalc() function has some
features that would let you make more elaborate assumptions based on timing
of measurements and such (see the documentation here:
https://wviechtb.github.io/metafor/reference/vcalc.html). Depending on how
big your concern is, perhaps it would be worth exploring these features. If
it's a small feature of the data, however, I think it would be pretty
reasonable and conventional to use a common correlation assumption, since
robust variance estimation / inference methods will work even if some
aspects of the working model aren't correctly specified.
James
On Tue, Feb 7, 2023 at 2:18 AM Wilma Charlott Theilig via
R-sig-meta-analysis <r-sig-meta-analysis using r-project.org> wrote:
> Dear all,
>
> thank you for adding me to the mailing list! Meta-analysis and R- beginner
> here.
>
>
> I plan to conduct a meta-analysis following a systematic review on the
> topic "Empathy and Theory of Mind - Do they correlate in children?". My
> data set consists of correlational data. In total, I have identified 80
> studies and 204 effect sizes that I could use for the analysis. Since
> nested effect sizes are available and I do not have any information about
> the correlations between these nested effect sizes, it is possible to work
> with either RVE or multi-level analyses.
>
> For my research question, a three-level meta-analysis would make the most
> sense (I want to do a moderator analysis with meanage and assessment type
> and add "Study" as an additional level).
>
> The problem I have, however, is that my effect sizes are dependent for
> various reasons. I have T1 and T2 data from longitudinal studies, the
> female, male and overall sample of studies, as well as samples where the
> correlation between empathy and ToM was measured using the same sample but
> different instruments.
>
> On the metafor website in the example of Konstantopoulos (2011) is stated
> that "It is important to note that the models used above assume that the
> sampling errors of the effect size estimates are independent. This is
> typically an appropriate assumption as long as there is no overlap in the
> data/individuals used to compute the various estimates. However, when
> multiple estimates are obtained from the same group of individuals, then
> this assumption is most certainly violated."
>
>
> I was planning to use the R-script by Gucciardi (2021)
>
> https://osf.io/brhsw
>
> and was wondering if I could adapt it to account for the different sources
> of dependency. I read about combining RVE and Multi-level meta-analysis or
> CHE-models that I could use to solve my problem but I was wondering what
> the best way (and easiest way) would be?
>
> What would be the consequences of just ignoring the different sources of
> dependency?
>
> I am really looking forward for your answers.
>
>
> Best regards
>
> Wilma Theilig
>
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-meta-analysis mailing list @ R-sig-meta-analysis using r-project.org
> To manage your subscription to this mailing list, go to:
> https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis
>
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list