[R-meta] Bivariate generalized linear mixed model with {metafor}

Arthur Albuquerque @rthurc@|r|o @end|ng |rom gm@||@com
Wed Mar 9 23:35:11 CET 2022


Very enlightening code, thank you!!

I noted that you used a different lme4 syntax for this model in your article with Jackson et al with a “control” indicator and removed the intercept within the random effect.

I compared both syntax outputs. Results are all the same, except the random effect correlation parameter (opposite results). Do you know why?

library(metafor)
library(lme4)

dat <- structure(list(study.name = c("Cutler1995", "Dahlof1991", "Dowson2002", "Ensink1991", "Geraud2000", "Goadsby1991", "Goadsby2000", "Havanka2000", "Kaniecki2006", "Mathew2003", "Myllyla1998", "Nappi1994", "Patten1991", "Pfaffenrath1998", "Sandrini2002", "Sargent1995", "Sheftell2005", "Tfelt-Hansen1995", "Tfelt-Hansen1998", "Visser1996"), n1 = c(66L, 275L, 194L, 131L, 504L, 89L, 129L, 98L, 131L, 831L, 42L, 142L, 142L, 277L, 170L, 46L, 902L, 122L, 388L, 72L), n2 = c(65L, 182L, 99L, 78L, 56L, 93L, 142L, 91L, 127L, 419L, 41L, 81L, 101L, 91L, 84L, 47L, 892L, 126L, 160L, 85L), r1 = c(37L, 180L, 123L, 60L, 304L, 45L, 63L, 59L, 64L, 471L, 33L, 73L, 95L, 175L, 85L, 26L, 649L, 63L, 239L, 33L), r2 = c(17L, 48L, 42L, 14L, 24L, 9L, 30L, 28L, 47L, 105L, 12L, 25L, 22L, 27L, 25L, 8L, 375L, 30L, 64L, 15L)), row.names = c(NA, 20L), class = "data.frame")

dat <- to.long(measure="OR", ai=r1, n1i=n1, ci=r2, n2i=n2, data=dat)

res <- glmer(cbind(out1,out2) ~ group + (group | study), data=dat, family=binomial)
summary(res)

VarCorr(res)
# Corr = -0.68

dat_mod = dat
dat_mod$treat = ifelse(dat$group==1, 1, 0)
dat_mod$control = ifelse(dat$group==2, 1, 0)

model6 = glmer(cbind(out1,out2)~factor(treat)+(control+treat-1|study),
 data=dat_mod, family=binomial(link="logit"))

summary(model6)

VarCorr(model6)
# Corr = 0.686

Best,

Arthur M. Albuquerque

Medical student
Universidade Federal do Rio de Janeiro, Brazil

On Mar 9, 2022, 6:54 PM -0300, Viechtbauer, Wolfgang (SP) <wolfgang.viechtbauer using maastrichtuniversity.nl>, wrote:
> Ok, so here is what I came up with:
>
> library(metafor)
> library(lme4)
>
> dat <- structure(list(study.name = c("Cutler1995", "Dahlof1991", "Dowson2002", "Ensink1991", "Geraud2000", "Goadsby1991", "Goadsby2000", "Havanka2000", "Kaniecki2006", "Mathew2003", "Myllyla1998", "Nappi1994", "Patten1991", "Pfaffenrath1998", "Sandrini2002", "Sargent1995", "Sheftell2005", "Tfelt-Hansen1995", "Tfelt-Hansen1998", "Visser1996"), n1 = c(66L, 275L, 194L, 131L, 504L, 89L, 129L, 98L, 131L, 831L, 42L, 142L, 142L, 277L, 170L, 46L, 902L, 122L, 388L, 72L), n2 = c(65L, 182L, 99L, 78L, 56L, 93L, 142L, 91L, 127L, 419L, 41L, 81L, 101L, 91L, 84L, 47L, 892L, 126L, 160L, 85L), r1 = c(37L, 180L, 123L, 60L, 304L, 45L, 63L, 59L, 64L, 471L, 33L, 73L, 95L, 175L, 85L, 26L, 649L, 63L, 239L, 33L), r2 = c(17L, 48L, 42L, 14L, 24L, 9L, 30L, 28L, 47L, 105L, 12L, 25L, 22L, 27L, 25L, 8L, 375L, 30L, 64L, 15L)), row.names = c(NA, 20L), class = "data.frame")
>
> # double-check that we can reproduce OR = 3.50 (95% CI, 2.94 to 4.16) for
> # the two-stage random-effects model
>
> res <- rma(measure="OR", ai=r1, n1i=n1, ci=r2, n2i=n2, data=dat, method="DL")
> predict(res, transf=exp, digits=2)
>
> # the model being fitted is essentially this one
>
> res <- rma.glmm(measure="OR", ai=r1, n1i=n1, ci=r2, n2i=n2, data=dat, model="UM.RS", cor=TRUE)
> summary(res)
> predict(res, transf=exp, digits=2)
>
> # we can also fit this model directly with glmer()
>
> dat <- to.long(measure="OR", ai=r1, n1i=n1, ci=r2, n2i=n2, data=dat)
>
> res <- glmer(cbind(out1,out2) ~ group + (group | study), data=dat, family=binomial)
> summary(res)
> round(exp(c(fixef(res)[2], confint(res, parm="group1", method="Wald"))), 2)
>
> # note the exact same pooled OR and 95% CI
>
> # however, the authors report the marginal OR, so for this we fit the model as
>
> res <- glmer(cbind(out1,out2) ~ 0 + group + (0 + group | study), data=dat, family=binomial)
> summary(res)
>
> # and then we can estimate the marginal OR as described in B.2
>
> cval <- 16*sqrt(3) / (15*pi)
> p1hat <- 1 / (1 + exp(-fixef(res)[1] / sqrt(1 + cval^2 * VarCorr(res)[[1]][1,1])))
> p2hat <- 1 / (1 + exp(-fixef(res)[2] / sqrt(1 + cval^2 * VarCorr(res)[[1]][2,2])))
> round((p2hat / (1 - p2hat)) / (p1hat / (1 - p1hat)), 2)
>
> # there is the 3.48 that the authors report; getting the CI for this marginal OR
> # requires a bit more work using the delta method
>
> So, to summarize: The model they describe *is* 'Model 6'. You can also fit this with rma.glmm() as shown above (with the 'cor=TRUE' option, which I hadn't implemented yet when we wrote that 2018 paper). I don't know why they focus on the marginal OR, but I didn't read the article fully.
>
> Best,
> Wolfgang
>
> > -----Original Message-----
> > From: Arthur Albuquerque [mailto:arthurcsirio using gmail.com]
> > Sent: Wednesday, 09 March, 2022 20:37
> > To: r-sig-meta-analysis using r-project.org; Viechtbauer, Wolfgang (SP)
> > Subject: RE: [R-meta] Bivariate generalized linear mixed model with {metafor}
> >
> > Dear Wolfgang,
> >
> > Thank you in advance. I contacted Reference [1] authors, and they sent me this
> > data:
> >
> > structure(list(study.name = c("Cutler1995", "Dahlof1991", "Dowson2002",
> > "Ensink1991", "Geraud2000", "Goadsby1991", "Goadsby2000", "Havanka2000",
> > "Kaniecki2006", "Mathew2003", "Myllyla1998", "Nappi1994", "Patten1991",
> > "Pfaffenrath1998", "Sandrini2002", "Sargent1995", "Sheftell2005", "Tfelt-
> > Hansen1995", "Tfelt-Hansen1998", "Visser1996"), n1 = c(66L, 275L, 194L, 131L,
> > 504L, 89L, 129L, 98L, 131L, 831L, 42L, 142L, 142L, 277L, 170L, 46L, 902L, 122L,
> > 388L, 72L), n2 = c(65L, 182L, 99L, 78L, 56L, 93L, 142L, 91L, 127L, 419L, 41L,
> > 81L, 101L, 91L, 84L, 47L, 892L, 126L, 160L, 85L), r1 = c(37L, 180L, 123L, 60L,
> > 304L, 45L, 63L, 59L, 64L, 471L, 33L, 73L, 95L, 175L, 85L, 26L, 649L, 63L, 239L,
> > 33L), r2 = c(17L, 48L, 42L, 14L, 24L, 9L, 30L, 28L, 47L, 105L, 12L, 25L, 22L,
> > 27L, 25L, 8L, 375L, 30L, 64L, 15L)), row.names = c(NA, 20L), class =
> > "data.frame")
> >
> > Best,
> >
> > Arthur M. Albuquerque
> >
> > Medical student
> > Universidade Federal do Rio de Janeiro, Brazil
> >
> > On Mar 8, 2022, 7:07 PM -0300, Viechtbauer, Wolfgang (SP)
> > <wolfgang.viechtbauer using maastrichtuniversity.nl>, wrote:
> >
> > Hi Arthur,
> >
> > I don't want to start re-reading all those articles right now, but who cites who
> > isn't the best indication of whether people are talking about the same model or
> > not.
> >
> > In [1], the authors use data from a Cochrane review to illustrate the model. If
> > you provide these data here using dput(), so that I can immediately reproduce the
> > exact dataset, then I could see whether I can reproduce their results. It's time-
> > consuming extracting data manually from pdfs, so I'll leave this up to you
> > whether you want to do this.
> >
> > Best,
> > Wolfgang
> >
> > -----Original Message-----
> > From: Arthur Albuquerque [mailto:arthurcsirio using gmail.com]
> > Sent: Tuesday, 08 March, 2022 2:07
> > To: r-sig-meta-analysis using r-project.org; Viechtbauer, Wolfgang (SP)
> > Subject: RE: [R-meta] Bivariate generalized linear mixed model with {metafor}
> >
> > Hi Wolfgang,
> >
> > It’s me again about this bivariate model. I am having a hard time trying to
> > figure out if I understood it correctly.
> >
> > To recap, I wanted to fit a bivariate meta-analysis model (hereafter, mod1)
> > described in Reference [1] below. You replied suggesting it was the "Model 6: the
> > Van Houwelingen bivariate” (mod2) in your article with Jackson et al (Reference
> > [2]).
> >
> > However, I am now re-reading all these articles and I believe mod1 and mod2 are
> > different. Reference [1] cites Thompson et al. (Reference [3]), and does not cite
> > van Houwelingen. You cited Van Houwelingen et al (Reference [4]). To my
> > knowledge, they seem different models indeed.
> >
> > In fact, Van Houwelingen in Reference [5] directly cites Thompson suggesting
> > these models are distinct:
> >
> > "The mix of many 􏱪fixed and a few random e􏱨ffects as proposed by Thompson et al.
> > … are more in the spirit of the functional approach. These methods are meant to
> > impose no conditions on the distribution of the true baseline risks… In a letter
> > to the editor by Van Houwelingen and Senn following the article of Thompson et
> > al. , Van Houwelingen and Senn argue that putting Bayesian priors on all nuisance
> > parameters, as done by Thompson et al., does not help solving the inconsistency
> > problem."
> >
> > Are they indeed different model?
> >
> > Please ignore this email if this question is out of the scope of your mailing
> > list. Sorry in advance.
> >
> > Kind regards,
> >
> > Arthur M. Albuquerque
> >
> > Medical student
> > Universidade Federal do Rio de Janeiro, Brazil
> >
> > References:
> >
> > [1] Xiao, Mengli, Yong Chen, Stephen R Cole, Richard F MacLehose, David B
> > Richardson, and Haitao Chu. ‘Controversy and Debate: Questionable Utility of the
> > Relative Risk in Clinical Research: Paper 2: Is the Odds Ratio “Portable” in
> > Meta-Analysis? Time to Consider Bivariate Generalized Linear Mixed Model’.
> > Journal of Clinical Epidemiology 142 (February 2022): 280–87.
> > https://doi.org/10.1016/j.jclinepi.2021.08.004
> >
> > [2] Jackson, Dan, Martin Law, Theo Stijnen, Wolfgang Viechtbauer, and Ian R.
> > White. ‘A Comparison of Seven Random-Effects Models for Meta-Analyses That
> > Estimate the Summary Odds Ratio’. Statistics in Medicine 37, no. 7 (30 March
> > 2018): 1059–85. https://doi.org/10.1002/sim.7588
> >
> > [3] Thompson, Simon G., Teresa C. Smith, and Stephen J. Sharp. ‘Investigating
> > Underlying Risk as a Source of Heterogeneity in Meta-Analysis’. Statistics in
> > Medicine 16, no. 23 (15 December 1997): 2741–58.
> > https://doi.org/10.1002/(SICI)1097-0258(19971215)16:23<2741::AID-SIM703>3.0.CO;2-
> > 0
> >
> > [4] Van Houwelingen, Hans C., Koos H. Zwinderman, and Theo Stijnen. ‘A Bivariate
> > Approach to Meta-Analysis’. Statistics in Medicine 12, no. 24 (30 December 1993):
> > 2273–84. https://doi.org/10.1002/sim.4780122405
> >
> > [5] Houwelingen, Hans C. van, Lidia R. Arends, and Theo Stijnen. ‘Advanced
> > Methods in Meta-Analysis: Multivariate Approach and Meta-Regression’. Statistics
> > in Medicine 21, no. 4 (28 February 2002): 589–624.
> > https://doi.org/10.1002/sim.1040

	[[alternative HTML version deleted]]



More information about the R-sig-meta-analysis mailing list