[R-meta] Time as indicator vs time as meaning
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Sun Oct 10 23:24:46 CEST 2021
>-----Original Message-----
>From: Stefanou Revesz [mailto:stefanourevesz using gmail.com]
>Sent: Sunday, 10 October, 2021 23:03
>To: Viechtbauer, Wolfgang (SP)
>Cc: R meta
>Subject: Re: [R-meta] Time as indicator vs time as meaning
>
>ATTACHMENT(S) REMOVED: image.png
>
>Thanks! Reporting back the results for two models (note: "time_wk" =
>"time_meaning_wks").
>In model 1, I used "time_wk" to the left of | for "CAR".
>In model 2, I used "time_whtn" to the left of | for "CAR".
>In both models, rho is estimated to be 1. But the likelihood profile
>for rho seems ok for both models (attached).
>
>However, in model 1, phi is estimated to be 0.1170. In model 2, phi is
>estimated to be 0. In both models, the likelihood profiles for phi
>seem ok.
>Which phi, then, seems appropriate?
>
>Thank you,
>Stefanou
>
>#******************************
>MODEL 1:
>#******************************
>rma.mv(yi ~ time_btw + time_wthn, vi,
> random =
> list(~ time_wthn | study, ~time_wk | study), struct =
>c("GEN","CAR"),data=data)
>
>Variance Components:
>
>outer factor: study (nlvls = 49)
>inner term: ~time_wk (nlvls = 12)
>
> estim sqrt fixed rho: intr tm_w
>intrcpt 0.1306 0.3614 no - no
>time_wk 0.0236 0.1536 no 1.0000 -
>
>outer factor: study (nlvls = 49)
>inner factor: time_wk (nlvls = 12)
>
> estim sqrt fixed
>gamma^2 0.0703 0.2652 no
>phi 0.0544 no
>
>Model Results:
>
> estimate se zval pval ci.lb ci.ub
>intrcpt 0.0049 0.1816 0.0272 0.9783 -0.3510 0.3608
>time_btw 0.3399 0.2164 1.5708 0.1162 -0.0842 0.7641
>time_wthn 0.2837 0.0708 4.0064 <.0001 0.1449 0.4224 ***
Something doesn't match up here. The first part of the 'random' formula says '~ time_wthn | study' but the output says that the inner term is ~time_wk.
>#******************************
>MODEL 2:
>#******************************
>rma.mv(yi ~ time_btw + time_wthn, vi,
> random =
> list(~ time_wthn | study, ~time_wthn | study), struct
>= c("GEN","CAR"),data=data)
>Variance Components:
>
>outer factor: study (nlvls = 49)
>inner term: ~time_wthn (nlvls = 9)
>
> estim sqrt fixed rho: intr tm_w
>intrcpt 0.4034 0.6351 no - no
>time_wthn 0.1141 0.3377 no 1.0000 -
>
>outer factor: study (nlvls = 49)
>inner factor: time_wthn (nlvls = 9)
>
> estim sqrt fixed
>gamma^2 0.0770 0.2775 no
>phi 0.0000 no
>
>Test for Residual Heterogeneity:
>QE(df = 402) = 1450.3879, p-val < .0001
>
>Test of Moderators (coefficients 2:3):
>QM(df = 2) = 24.4255, p-val < .0001
>
>Model Results:
>
> estimate se zval pval ci.lb ci.ub
>intrcpt 0.1155 0.1861 0.6204 0.5350 -0.2493 0.4802
>time_btw 0.3184 0.1815 1.7540 0.0794 -0.0374 0.6741 .
>time_wthn 0.3247 0.0658 4.9344 <.0001 0.1957 0.4536 ***
More information about the R-sig-meta-analysis
mailing list