[R-meta] rma.mv to lme possible?
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Fri Nov 26 11:05:03 CET 2021
Hi Tim,
The internal structures of rma.mv and lme objects are so inherently different that it would take a lot of effort to write a converter function.
Best,
Wolfgang
>-----Original Message-----
>From: R-sig-meta-analysis [mailto:r-sig-meta-analysis-bounces using r-project.org] On
>Behalf Of Timothy MacKenzie
>Sent: Friday, 26 November, 2021 6:27
>To: R meta
>Subject: Re: [R-meta] rma.mv to lme possible?
>
>More generally, is there a way to convert/switch an rma.mv() fitted
>object to a corresponding lme() fitted object such that then I can use
>the resulting object in R packages like "library(effects)"
>(https://cran.r-project.org/web/packages/effects/index.html) for
>plotting purposes?
>
>Thanks,
>Tim M
>
>On Thu, Nov 25, 2021 at 7:57 PM Timothy MacKenzie <fswfswt using gmail.com> wrote:
>>
>> Dear All,
>>
>> I've specified the following rma.mv() model for my meta-analysis.
>> However, I'm wondering how to replicate this model using lme() from
>> the nlme package (sample data is provided below)?
>>
>> V <- with(dat1, clubSandwich::impute_covariance_matrix(vi,study,r=.6))
>>
>> g<-rma.mv(yi ~ 0 + study_type, V, random = list(~study_type | study,
>> ~interaction(study_type,reporting) | obs), struct = c("DIAG","DIAG"),
>> data = dat1)
>>
>> I'm open to either ML or REML methods of estimation. I have tried the
>> following with no success:
>>
>> lme(yi ~ 0 + study_type,
>> random = list(~study_type | study,
>> ~interaction(study_type,reporting) | obs),
>> weights = varComb(varFixed(~vi),
>> varIdent(form = ~study | study_type),
>> varIdent(form = ~obs |
>> interaction(study_type,reporting))),
>> correlation = corCompSymm(.6, ~1|study, fixed = TRUE),
>> data = dat1,
>> control=lmeControl(sigma = 1,returnObject=TRUE))
>>
>> Thanks,
>> Tim M
>> d="
>> study subscale reporting obs include yi vi study_type
>> 1 A subscale 1 yes 1.94 0.33503768 standard
>> 1 A subscale 2 yes 1.06 0.01076604 standard
>> 2 A subscale 3 yes 2.41 0.23767389 standard
>> 2 A subscale 4 yes 2.34 0.37539841 standard
>> 3 A&C composite 5 yes 3.09 0.31349510 standard
>> 3 A&C composite 6 yes 3.99 0.01349510 standard
>> 4 A&B composite 7 yes 2.90 0.31349510 standard
>> 4 A&B composite 8 yes 3.01 0.91349510 standard
>> 5 G&H composite 9 yes 2.01 0.97910095 alternative
>> 5 G&H composite 10 yes 2.11 0.37910095 alternative
>> 6 E&G composite 11 yes 2.01 0.67910095 alternative
>> 6 E&G composite 12 yes 2.11 0.87910095 alternative
>> 7 E subscale 13 yes 0.08 0.21670360 alternative
>> 7 G subscale 14 yes 0.77 0.91297170 alternative
>> 8 F subscale 15 yes 1.08 0.81670360 alternative
>> 8 E subscale 16 yes 1.07 0.91297170 alternative"
>>
>> dat1 <- read.table(text=d,h=T)
More information about the R-sig-meta-analysis
mailing list