[R-meta] weight in rmv metafor
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Fri Jun 19 10:38:08 CEST 2020
When showweights=TRUE in forest(x) where 'x' is an 'rma.mv' object, the weights are based on the diagonal of the weight matrix (same as when using weights(x)).
Best,
Wolfgang
>-----Original Message-----
>From: Norman DAURELLE [mailto:norman.daurelle using agroparistech.fr]
>Sent: Wednesday, 17 June, 2020 3:50
>To: Viechtbauer, Wolfgang (SP)
>Cc: r-sig-meta-analysis
>Subject: RE: [R-meta] weight in rmv metafor
>
>Dear all, dr. Viechtbauer,
>
>than you very much for your answer !
>
>I hadn't come across that article, no. This, combined with your answer
>itself, was very helpful.
>
>If the real weights attributed to estimates are obtained that way, then what
>do the weights that appear when using the showweights parameter of the
>forest() function represent ?
>
>Thank you !
>
>Norman
>
>----- Mail d'origine -----
>De: Viechtbauer, Wolfgang (SP)
><wolfgang.viechtbauer using maastrichtuniversity.nl>
>À: Norman DAURELLE <norman.daurelle using agroparistech.fr>
>Cc: r-sig-meta-analysis <r-sig-meta-analysis using r-project.org>
>Envoyé: Mon, 15 Jun 2020 13:52:16 +0200 (CEST)
>Objet: RE: [R-meta] weight in rmv metafor
>
>Dear Normand,
>
>Did you read this?
>
>http://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models
>
>It answers 1) and 2). Let's take an even simpler example:
>
>library(metafor)
>
>dat <- data.frame(study = c(1,1,2,2,3,4),
>id = 1:6,
>yi = c(.1,.3,.2,.4,.6,.8),
>vi = rep(.01,6))
>dat
>
># studies 1 and 2 contribute 2 estimates each, studies 3 and 4 a single
>estimate
>
>res <- rma.mv(yi, vi, random = ~ 1 | study/id, data=dat)
>res
>
>weights(res)
>
>The output of this is:
>
>> weights(res)
>1 2 3 4 5 6
>20.485124 20.485124 20.485124 20.485124 9.029753 9.029753
>
>So maybe this is what you are observing - that the values along the diagonal
>of the weight matrix are larger for the studies with 2 estimates. But those
>weights are just based on the diagonal of the weight matrix. One really
>needs to take the whole weight matrix into consideration. As described on
>that page, the actual weights assigned to the estimates when computing the
>weight average of the estimates are the row sums of the weight matrix. You
>can get this with:
>
>W <- weights(res, type="matrix")
>rowSums(W) / sum(W) * 100
>
>This yields:
>
>> rowSums(W) / sum(W) * 100
>1 2 3 4 5 6
>13.34116 13.34116 13.34116 13.34116 23.31768 23.31768
>
>So actually, the weight assigned to the first and second estimate of the
>studies with 2 estimates is smaller than the weight assigned to the single
>estimate of the studies that contribute a single estimate.
>
>Not sure what the problem is with 3) but I don't think your data are needed
>to clarify the issue.
>
>Best,
>Wolfgang
>
>>-----Original Message-----
>>From: Norman DAURELLE [mailto:norman.daurelle using agroparistech.fr]
>>Sent: Monday, 15 June, 2020 10:10
>>To: Viechtbauer, Wolfgang (SP)
>>Cc: r-sig-meta-analysis
>>Subject: RE: [R-meta] weight in rmv metafor
>>
>>Dear all, Dr Viechtbauer, Dr Del Ponte,
>>
>>I read what you suggested, and went through the archives of the mailing
>>list, and even though some threads were dealing with similar questions, I
>>didn't really find the answers I was looking for there.
>>
>>I have multiple questions : 1) How exactly is calculated the weight of each
>>estimate in the function rma.mv() ?
>>
>>2) (this question might be answered too when answering the first one
>but...)
>>Why does that function (rma.mv) attribute more weight to estimates coming
>>from studies that have multiple estimates relatively to ones that come from
>>studies that only have one estimate ?
>>
>>3) I tried to produce a reproducible example of my code, would it be
>>possible to tell me if I got things right ?
>>
>>my dataset is this table (I didn't know if I could attach anything) :
>>
>>> dat
>> author year estimate std_error p_value r
>>number_of_obs
>>1 Ballinger et al 1988 -19.3450 5.8220 4.638e-03 -0.6511331
>>17
>>2 Matthieu & Norman 2020 -2.7398 0.8103 7.424e-04 -0.0920000
>>1352
>>3 Khangura 2011 -1.9610 1.3470 1.536e-01 -0.2298655
>>40
>>4 Kutcher 1990 -21.1350 3.9330 1.420e-05 -0.7321321
>>27
>>5 Steed 2007 -13.9700 3.2500 7.355e-04 -0.7542836
>>16
>>6 Steed 2007 -31.9440 4.7650 2.765e-04 -0.9301781
>>9
>>7 Steed 2007 -4.2780 3.0940 1.883e-01 -0.3466844
>>16
>>8 Sprague et al 2010 -21.9880 5.3010 7.562e-04 -0.7198487
>>18
>>9 Upadhaya et al 2019 -43.6170 3.3440 1.133e-06 -0.9772861
>>10
>>10 Khangura et al 2005 -5.3500 NA 5.000e-02 -0.4200000
>>29
>>11 Khangura et al 2005 -10.5600 NA 1.000e-03 -0.5700000
>>29
>>12 Khangura et al 2005 -9.9700 NA 1.300e-02 -0.4600000
>>29
>>13 Khangura et al 2005 -5.4500 NA 1.100e-02 -0.4700000
>>29
>>14 Khangura et al 2005 -22.7500 NA 2.800e-02 -0.4200000
>>29
>>15 Khangura et al 2005 -16.8300 NA 2.200e-02 -0.4300000
>>29
>>16 Khangura et al 2005 -9.2100 NA 3.900e-02 -0.3900000
>>29
>>
>>V1 <- c("Ballinger et al", "Matthieu & Norman", "Khangura", "Kutcher",
>>"Steed", "Steed", "Steed", "Sprague et al",
>> "Upadhaya et al", "Khangura et al", "Khangura et al", "Khangura et
>>al", "Khangura et al", "Khangura et al",
>> "Khangura et al", "Khangura et al" )
>>V2 <- c(1988, 2020, 2011, 1990, 2007, 2007, 2007, 2010, 2019, 2005, 2005,
>>2005, 2005, 2005, 2005, 2005)
>>V3 <- c(-19.3450, -2.7398, -1.9610, -21.1350, -13.9700, -31.9440, -4.2780,
>-
>>21.9880, -43.6170, -5.3500,
>> -10.5600, -9.9700, -5.4500, -22.7500, -16.8300, -9.2100)
>>V4 <- c(5.8220, 0.8103, 1.3470, 3.9330, 3.2500, 4.7650, 3.0940, 5.3010,
>>3.3440, NA, NA, NA, NA, NA, NA, NA)
>>V5 <- c(4.638e-03, 7.424e-04, 1.536e-01, 1.420e-05, 7.355e-04, 2.765e-04,
>>1.883e-01, 7.562e-04, 1.133e-06,
>> 5.000e-02, 1.000e-03, 1.300e-02, 1.100e-02, 2.800e-02, 2.200e-02,
>>3.900e-02)
>>V6 <- c(-0.6511331, -0.0920000, -0.2298655, -0.7321321, -0.7542836, -
>>0.9301781, -0.3466844, -0.7198487,
>> -0.9772861, -0.4200000, -0.5700000, -0.4600000, -0.4700000, -
>>0.4200000, -0.4300000, -0.3900000)
>>V7 <- c(17, 1352, 40, 27, 16, 9, 16, 18, 10, 29, 29, 29, 29, 29, 29, 29)
>>dat <- cbind(V1, V2, V3, V4, V5, V6, V7)
>>dat <- as.data.frame(dat)
>>dat$V1 <- as.character(dat$V1)
>>dat$V2 <- as.integer(as.character(dat$V2))
>>dat$V3 <- as.numeric(as.character(dat$V3))
>>dat$V4 <- as.numeric(as.character(dat$V4))
>>dat$V5 <- as.numeric(as.character(dat$V5))
>>dat$V6 <- as.numeric(as.character(dat$V6))
>>dat$V7 <- as.numeric(as.character(dat$V7))
>>str(dat)
>>dat <- dat %>% rename(author = "V1",
>> year = "V2",
>> estimate = "V3",
>> std_error = "V4",
>> p_value = "V5",
>> r = "V6",
>> number_of_obs = "V7")
>>
>>for (i in 1:nrow(dat)){
>> if (is.na(dat$std_error[i]) == TRUE ){
>> dat$std_error[i] <- abs(dat$estimate[i]) / qt(dat$p_value[i]/2,
>> df=dat$number_o
>f
>>_obs-2, lower.tail=FALSE)
>> }
>>}
>>
>>res <- rma.mv(yi = dat$estimate, V = (dat$std_error)**2, random = ~ 1 |
>>author, data=dat)
>>coef_test(res, vcov="CR2")
>>forest(res, addcred = TRUE, showweights = TRUE, header = TRUE,
>> order = "obs", col = "blue", slab = dat$author)
>>
>>funnel(res)
>>ranktest(res)
>>
>>The for loop that I use (and in which I use a formula that Dr Viechtbauer
>>gave me in a previous answer) to calculate the standard errors for
>estimates
>>that I didn't calculate myself gives me an error message, but still gives
>me
>>values.
>>
>>The error message is :
>>
>>Warning messages:
>>1: In data$std_error[i] <- abs(data$estimate[i])/qt(data$p_value[i]/2, :
>> number of items to replace is not a multiple of replacement length
>>
>>and it is repeated on 7 lines.
>>I am not entirely sure, but I think this comes from the fact that values
>are
>>set to NAs before the loop is run and are replaced by values, so replacing
>>an item of length 0 with an item of length 1 I believe.
>>
>>I hope this example can be run simply with a copy / paste, I think it
>>should.
>>
>>Did I do things correctly ? If not what should I modify ?
>>
>>Thank you !
>>
>>Norman
More information about the R-sig-meta-analysis
mailing list