[R-meta] Back transformation of arcsine transformed data in meta-regression
Daniel Mønsted Shabanzadeh
dm@h@b@n @end|ng |rom gm@||@com
Wed Feb 5 22:16:14 CET 2020
Hey
I am performing a meta-regression analysis with both a continuous and a
categorical variable and use the arcsine transformation.
b<-rma(xi=compl_treat, ni=total, mods = ~age_cor+year, measure = "PAS",
data=a)
print(b)
Mixed-Effects Model (k = 425; tau^2 estimator: REML)
tau^2 (estimated amount of residual heterogeneity): 0.0165 (SE = 0.0013)
tau (square root of estimated tau^2 value): 0.1286
I^2 (residual heterogeneity / unaccounted variability): 99.57%
H^2 (unaccounted variability / sampling variability): 230.02
R^2 (amount of heterogeneity accounted for): 4.23%
Test for Residual Heterogeneity:
QE(df = 418) = 42191.1379, p-val < .0001
Test of Moderators (coefficients 2:7):
QM(df = 6) = 24.6125, p-val = 0.0004
Model Results:
estimate se zval pval ci.lb ci.ub
intrcpt 3.0578 1.5361 1.9907 0.0465 0.0471 6.0684 *
age_cor1 0.0206 0.0175 1.1769 0.2392 -0.0137 0.0549
age_cor2 0.0276 0.0271 1.0189 0.3082 -0.0255 0.0807
age_cor3 0.0738 0.0184 4.0149 <.0001 0.0378 0.1098 ***
age_cor4 -0.0170 0.0340 -0.4991 0.6177 -0.0837 0.0497
age_cormissing -0.0292 0.0506 -0.5785 0.5629 -0.1283 0.0698
year -0.0014 0.0008 -1.8830 0.0597 -0.0029 0.0001 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Using the usual back transformation gives strange estimates of proportions.
Since i have added the continuous variable "year" it has been looking odd.
c<-predict(b, newmods=rbind(0, diag(6)), transf=transf.iarcsin)
print(c)
pred ci.lb ci.ub cr.lb cr.ub
1 1.0000 0.0022 1.0000 0.0013 1.0000
2 1.0000 0.0037 1.0000 0.0025 1.0000
3 1.0000 0.0044 1.0000 0.0031 1.0000
4 1.0000 0.0145 1.0000 0.0121 1.0000
5 1.0000 0.0009 1.0000 0.0004 1.0000
6 1.0000 0.0005 1.0000 0.0001 1.0000
7 1.0000 0.0022 1.0000 0.0013 1.0000
What is the mistake here? Any other way of transforming the data back to
proportions?
Ideas appreciated.
Regards,
Daniel
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list