[R-meta] Egger's test with multilevel meta analysis
Dylan Johnson
dy|@nr@john@on @end|ng |rom m@||@utoronto@c@
Wed Dec 9 19:36:45 CET 2020
I have tried the following:
egger_multi <- rma.mv(HEDGE_G, HEDGE_VAR, random = ~ 1 | COHORT_ID, EFFECT_ID, mods = ~ STD_ERR, data = dataset)
coeftest(egger_multi, vcov = "CR2")
When I run the coeftest I receive the error:
Error in diag(se) : invalid 'nrow' value (too large or NA)
In addition: Warning message:
In diag(se) : NAs introduced by coercion
Dylan Johnson, MSc
MA Student, School and Clinical Child Psychology
Department of Applied Psychology and Human Development
University of Toronto
252 Bloor Street West
Toronto, ON M5S 1V6
From: James Pustejovsky<mailto:jepusto using gmail.com>
Sent: December 9, 2020 1:20 PM
To: Tobias Saueressig<mailto:t.saueressig using gmx.de>
Cc: Dylan Johnson<mailto:dylanr.johnson using mail.utoronto.ca>; R meta<mailto:r-sig-meta-analysis using r-project.org>
Subject: Re: [R-meta] Egger's test with multilevel meta analysis
EXTERNAL EMAIL:
We have a paper (forthcoming in Psych Methods) evaluating a similar method for adapting Egger's test to the multilevel context, using RVE:
* Rodgers, M. A., & Pustejovsky, J. E. (In Press). Evaluating Meta-Analytic Methods to Detect Selective Reporting in the Presence of Dependent Effect Sizes. Psychological Methods, forthcoming. https://doi.org/10.31222/osf.io/vqp8u
There is also a related paper by Fernandez-Castilla and colleagues:
* Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S. N., Onghena, P., & Van den Noortgate, W. (2019). Detecting selection bias in meta-analyses with multipleoutcomes: A simulation study. The Journal of Experimental Education, 1–20.
These tests can be implemented in rma.mv<http://rma.mv>() simply by including the standard error of the effect size (or a related measure of precision, such as the sample size) as a moderator. Say that data includes a variable called sei for the standard error of each effect size:
egger_multi <- rma.mv<http://rma.mv>(yi = yi, V = sei^2, random = ~ 1 | studyID, effectID, mods = ~ sei, data = dat)
Then apply cluster-robust standard errors for the RVE-based test:
coef_test(egger_multi, vcov = "CR2")
Further details available in our paper, and example code in our supplementary materials.
James
On Wed, Dec 9, 2020 at 12:07 PM <t.saueressig using gmx.de<mailto:t.saueressig using gmx.de>> wrote:
Hi Dylan,
you might want to look at this https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.13342
And this
https://cran.r-project.org/web/packages/xmeta/
Regards
Tobias
Am 09.12.2020 18:54 schrieb Dylan Johnson <dylanr.johnson using mail.utoronto.ca<mailto:dylanr.johnson using mail.utoronto.ca>>:
Hello,
I am in the process of carrying out a multilevel meta analysis using �rma.mv<http://rma.mv>�. Unfortunately, it does not seem like this type of model can be used with the dmetar �eggers.test� function.
Does anyone have any suggestions for how I could get around this?
Many thanks!
Dylan
[[alternative HTML version deleted]]
_______________________________________________
R-sig-meta-analysis mailing list
R-sig-meta-analysis using r-project.org<mailto:R-sig-meta-analysis using r-project.org>
https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis
_______________________________________________
R-sig-meta-analysis mailing list
R-sig-meta-analysis using r-project.org<mailto:R-sig-meta-analysis using r-project.org>
https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list