[R-meta] Back transformation of double arscine transformed estimates in metafor
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Sat Oct 5 23:36:39 CEST 2019
- Is the interpretation that line 1 represents the age_cor reference level (level 5) proportion and the remaining levels as listed in print (b)?
Yes!
- If I want to explore age_cor further, can I add multiple moderators to the model and just increase the diag in predict?
Do you mean: More levels of age_cor? Then yes. If you mean adding additional moderators, then it depends on what kind of moderators you are adding. They may not be dummy variables.
These might be useful readings:
http://www.metafor-project.org/doku.php/tips:testing_factors_lincoms
http://www.metafor-project.org/doku.php/tips:multiple_factors_interactions
Best,
Wolfgang
-----Original Message-----
From: Daniel Mønsted Shabanzadeh [mailto:dmshaban using gmail.com]
Sent: Saturday, 05 October, 2019 17:56
To: Viechtbauer, Wolfgang (SP)
Cc: r-sig-meta-analysis using r-project.org
Subject: Re: [R-meta] Back transformation of double arscine transformed estimates in metafor
Dear Wolfgang
The variable age_cor has 6 levels (ref. level 5)
table(a$age_cor)
5 1 2 3 4 missing
111 140 27 113 19 8
With your code suggestion slightly modified
b<-rma.glmm(xi=compl_treat, ni=total, mods = ~age_cor, measure = "PLO", data=a)
print(b)
Mixed-Effects Model (k = 401; tau^2 estimator: ML)
tau^2 (estimated amount of residual heterogeneity): 1.8327
tau (square root of estimated tau^2 value): 1.3538
I^2 (residual heterogeneity / unaccounted variability): 98.91%
H^2 (unaccounted variability / sampling variability): 91.85
Tests for Residual Heterogeneity:
Wld(df = 395) = 4777257347008370311248.0000, p-val < .0001
LRT(df = 395) = 0.0000, p-val = 1.0000
Test of Moderators (coefficient(s) 2:6):
QM(df = 5) = 20.3959, p-val = 0.0011
Model Results:
estimate se zval pval ci.lb ci.ub
intrcpt -3.9819 0.1456 -27.3422 <.0001 -4.2674 -3.6965 ***
age_cor1 0.3358 0.1922 1.7474 0.0806 -0.0408 0.7124 .
age_cor2 0.3169 0.3093 1.0244 0.3057 -0.2894 0.9231
age_cor3 0.8528 0.2012 4.2397 <.0001 0.4586 1.2471 ***
age_cor4 -0.0370 0.3850 -0.0962 0.9234 -0.7916 0.7176
age_cormissing 0.0009 0.5648 0.0016 0.9987 -1.1061 1.1080
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
c<-predict(b, newmods=rbind(0, diag(5)), transf=transf.ilogit)
print(c)
pred ci.lb ci.ub cr.lb cr.ub
1 0.0183 0.0138 0.0242 0.0013 0.2119
2 0.0254 0.0200 0.0323 0.0018 0.2726
3 0.0250 0.0148 0.0419 0.0017 0.2772
4 0.0419 0.0322 0.0544 0.0030 0.3866
5 0.0177 0.0089 0.0349 0.0012 0.2184
6 0.0183 0.0064 0.0516 0.0011 0.2460
- Is the interpretation that line 1 represents the age_cor reference level (level 5) proportion and the remaining levels as listed in print (b)?
- If I want to explore age_cor further, can I add multiple moderators to the model and just increase the diag in predict?
Regards,
Daniel
Daniel Mønsted Shabanzadeh
MD, PhD
Department of Gastroenterology, Surgical Unit
Hvidovre Hospital
Mobile +45 2546 5251
More information about the R-sig-meta-analysis
mailing list