[R-meta] Back transformation of double arscine transformed estimates in metafor
Daniel Mønsted Shabanzadeh
dm@h@b@n @end|ng |rom gm@||@com
Fri Oct 4 10:47:24 CEST 2019
Hey
I am performing a meta-regression of multiple single arm
studies. The outcome is proportions of complications following a specific
surgical treatment which is the same for all included studies. I want to
explore if variables such as age, continent or medications have an impact
on the outcome. Since some of the identified studies have 0 complications
events I have performed Freeman-Tuckey double arscine transformation of
data.
Data transformation
b<-escalc(xi=compl, ni=total, data=a, measure="PFT", add=0)
Meta-regression of multiple identified studies
metareg<-rma(yi, vi, data=b, mods=~continent+age+pm)
print(metareg)
Mixed-Effects Model (k = 11; tau^2 estimator: REML)
tau^2 (estimated amount of residual heterogeneity): 0.0091 (SE = 0.0060)
tau (square root of estimated tau^2 value): 0.0952
I^2 (residual heterogeneity / unaccounted variability): 91.15%
H^2 (unaccounted variability / sampling variability): 11.30
R^2 (amount of heterogeneity accounted for): 28.85%
Test for Residual Heterogeneity:
QE(df = 6) = 78.3204, p-val < .0001
Test of Moderators (coefficient(s) 2:5):
QM(df = 4) = 7.6936, p-val = 0.1035
Model Results:
estimate se zval pval ci.lb ci.ub
intrcpt 0.3197 0.1079 2.9640 0.0030 0.1083 0.5311 **
continentAsia -0.1666 0.1062 -1.5685 0.1168 -0.3747 0.0416
continentNorth America -0.1755 0.1067 -1.6452 0.0999 -0.3845 0.0336 .
ageinfant 0.1824 0.0741 2.4616 0.0138 0.0372 0.3277 *
pmTA -0.1484 0.0973 -1.5252 0.1272 -0.3392 0.0423
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
These estimates and CI are transformed. Usually I would transform them back
to proportions with predict in presence of simple models. But I am not sure
hos to do it in multiple models.
predict(metareg, transf=transf.ipft.hm, targ=list(ni=a$total)). This gives
us multiple lines of estimates which I cannot interpretate:
pred ci.lb ci.ub cr.lb cr.ub
1 0.0259 0.0017 0.0715 0.0000 0.1388
2 0.0202 0.0005 0.0594 0.0000 0.1245
3 0.0000 0.0000 0.0348 0.0000 0.0692
4 0.0202 0.0005 0.0594 0.0000 0.1245
5 0.1058 0.0290 0.2206 0.0056 0.2976
6 0.0175 0.0000 0.0940 0.0000 0.1478
7 0.1174 0.0380 0.2310 0.0100 0.3110
8 0.0202 0.0005 0.0594 0.0000 0.1245
9 0.0283 0.0000 0.1236 0.0000 0.1799
10 0.0259 0.0017 0.0715 0.0000 0.1388
11 0.0259 0.0017 0.0715 0.0000 0.1388
How do I obtain estimates of proportions for the impact of each variable
explored in the model?
Regards,
Daniel
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list