[R-meta] Different outputs by comparing random-effects model with a MLMA without intercept
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Sun Mar 10 14:18:16 CET 2019
-----Original Message-----
From: Michael Dewey [mailto:lists using dewey.myzen.co.uk]
Sent: Thursday, 07 March, 2019 18:06
To: Rafael Rios; Viechtbauer, Wolfgang (SP); r-sig-meta-analysis using r-project.org
Subject: Re: [R-meta] Different outputs by comparing random-effects model with a MLMA without intercept
Dear Rafael
I think this may be related to the issue outlined by Wolfgang in this
section of the web-site
http://www.metafor-project.org/doku.php/tips:comp_two_independent_estimates
Michael
On 07/03/2019 16:46, Rafael Rios wrote:
> Dear Wolfgang and All,
>
> I am conducting a meta-analysis to evaluate potential bias of a fixed
> predictor with two subgroups (predictor: yes and no). Because I found a
> bias, I removed the values of subgroup "yes" and performed a random-effects
> model. However, when I compared the output of the first model without
> intercept with the output of the random effects model, I obtained different
> results, especially in the estimation of confidence intervals. I was
> expecting to found similar results because the model without intercept
> tests if the average outcome differs from zero. Can you explain in which
> case this can happen? Every help is welcome.
>
>
> model1=rma.mv(yi, vi, mods=~predictor-1, random = list (~1|effectsizeID,
> ~1|studyID, ~1|speciesID), R=list(speciesID=phylogenetic_correlation),
> data=h)
>
> #Multivariate Meta-Analysis Model (k = 1850; method: REML)
> #
> #Variance Components:
> # estim sqrt nlvls fixed factor R
> #sigma^2.1 0.0145 0.1204 1850 no effectsizeID no
> #sigma^2.2 0.0195 0.1397 468 no studyID no
> #sigma^2.3 0.2386 0.4885 348 no speciesID yes
> #
> #Test for Residual Heterogeneity:
> #QE(df = 1848) = 10797.5993, p-val < .0001
> #
> #Test of Moderators (coefficients 1:2):
> #QM(df = 2) = 17.6736, p-val = 0.0001
> #
> *#Model Results:*
> *# estimate se zval pval
> ci.lb <http://ci.lb> ci.ub *
> *#potential_sceno 0.2843 0.1659 1.7141 0.0865 -0.0408 0.6095 *.
> #potential_sceyes 0.3741 0.1668 2.2421 0.0250 0.0471 0.7011 *
> #---
> #Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
> model2=rma.mv(zf, vzf, random = list (~1|effectsizeID, ~1|studyID,
> ~1|speciesID), R=list(speciesID=phylogenetic_correlation),
> data=subset(h,potential_sce=="no"))
>
> #Multivariate Meta-Analysis Model (k = 1072; method: REML)
> #
> #Variance Components:
> # estim sqrt nlvls fixed factor R
> #sigma^2.1 0.0140 0.1184 1072 no effectsizeID no
> #sigma^2.2 0.0394 0.1986 264 no studyID no
> #sigma^2.3 0.0377 0.1943 240 no speciesID yes
> #
> #Test for Heterogeneity:
> #Q(df = 1071) = 4834.5911, p-val < .0001
> #
> *#Model Results:*
> *#estimate se zval pval ci.lb <http://ci.lb> ci.ub *
> *# 0.2989 0.0720 4.1494 <.0001 0.1577 0.4401 *** *
> #---
> #Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
> I used another data set to conduct the same approach and obtained similar
> results:
>
> dat <- dat.bangertdrowns2004
> rbind(head(dat, 10), tail(dat, 10))
> dat <- dat[!apply(dat[,c("length", "wic", "feedback", "info", "pers",
> "imag", "meta")], 1, anyNA),]
>
> head(dat)
>
> random.model=rma.mv(yi, vi, random=list(~1|id, ~1|author), structure="UN",
> data=subset(dat, subject=="Math"))
>
> random.model
>
> *#Math*
> *#Model Results:*
> *# estimate se zval pval ci.lb <http://ci.lb> ci.ub *
> *# 0.2106 0.0705 2.9899 0.0028 0.0726 0.3487 ***
>
> mixed.model=rma.mv(yi, vi, mods=~subject-1, random=list(~1|id, ~1|author),
> structure="UN", data=dat)
>
> anova(mixed.model,btt=2)
>
> *#Math*
> *# estimate se zval pval ci.lb <http://ci.lb> ci.ub*
> *# 0.2100 0.0697 3.0122 0.0026 0.0734 0.3467*
>
> Best wishes,
>
> Rafael.
> __________________________________________________________
>
> Dr. Rafael Rios Moura
> *scientia amabilis*
>
> Behavioral Ecologist, Ph.D.
> Postdoctoral Researcher
> Universidade Estadual de Campinas (UNICAMP)
> Campinas, São Paulo, Brazil
>
> ORCID: http://orcid.org/0000-0002-7911-4734
> Currículo Lattes: http://lattes.cnpq.br/4264357546465157
> Research Gate: https://www.researchgate.net/profile/Rafael_Rios_Moura2
More information about the R-sig-meta-analysis
mailing list