[R-meta] Obtaining study-level effect size and sampling variance through robust variance models

Michael Dewey ||@t@ @end|ng |rom dewey@myzen@co@uk
Sat Mar 2 14:17:49 CET 2019


Dear Mufan

You do not need to fit a model with rma.uni to use forest.

library(metafor)
?forest.default

Michael

On 01/03/2019 18:16, Mufan Luo wrote:
> Dear meta-analysists,
> Hope this email finds you well.
> I am conducting a meta-analysis using robust variance model. To create forest plot for each study, I’d like to obtain mean effect size and sampling variance for each study.
> I decided to use forest function in metafor to create the forest plots.
> Since the forest function only accepts rma file, I am trying to fit a rma model (rather than rma.uni) that produces the same coefficient, 95% CI and p-value as the robu model.
> For example, below is my robu model,
> run.anxiety <- robu(formula = Fisher.s.Z ~ 1,
>                      var.eff.size = Fisher_var,
>                      data = anxiety,
>                      studynum = Study,
>                      modelweights = "CORR")
> According to prior discussion about converting robu to rma.uni in this mail list, I also calculated the number of studies k in cluster j, average of sampling variance Vbar, and tau square.
> 
> tau_sq_robu_anx <- as.numeric(run.anxiety$mod_info$tau.sq)
> anxiety$k <- with(anxiety, table(Study)[Study])
> anxiety$Vbar <- with(anxiety, tapply(Fisher_var, Study, mean)[Study])
> 
> I am trying to get the weight and plug it into the following model,
> 
> rma(yi = weightedES, vi = ??, data = weighted)
> 
> However, I am not sure if the correct calculation is
> 
> anxiety$Vnew <- with(anxiety, as.numeric(Vbar + tau_sq_robu_anx)
> 
> Thank you so much for our attention.
> Best,
> Mufan
> --
> 
> 
> 	[[alternative HTML version deleted]]
> 
> _______________________________________________
> R-sig-meta-analysis mailing list
> R-sig-meta-analysis using r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-meta-analysis
> 

-- 
Michael
http://www.dewey.myzen.co.uk/home.html



More information about the R-sig-meta-analysis mailing list