# [R-meta] Meta-regression with nonlinear and factorial moderators

Cesar Terrer Moreno cesar.terrer at me.com
Thu Mar 15 09:17:22 CET 2018

```Dear all,

Based on model selection, I have an effect size that is driven by two moderators: a continuous “C” and a factorial “F”:

rma(ES, VAR, data= dat, mods= ~ 1 + C + F)

The relationship between ES and C is nonlinear, with high ES when C is low, but ES quickly approaching 0 when C becomes higher, but staying at 0 even when C is very high.

Previously, you guys helped me define a nonlinear meta-regression for C of the form: y ~ p1 × exp(-p2*x), with x=C, including a function to predict the nonlinear ES and SE.

nlfun <- function(x, p1, p2)
p1 * exp(-p2*x)

# optimization function
llfun <- function(par, yi, vi, x, random=TRUE) {
p1 <- par
p2 <- par
if (random) {
tau2 <- exp(par)
} else {
tau2 <- 0
}
mu <- nlfun(x, p1, p2)
-sum(dnorm(yi, mean=mu, sd=sqrt(vi + tau2), log=TRUE))
}

# optimize
res <- optim(par=c(8,0.4,log(.01)), llfun, yi=am.df\$es, vi=am.df\$var, x=am.df\$CNr, hessian=TRUE)
# back-transform log(tau2) to tau2
res\$par <- exp(res\$par)
tau2_ME <- res\$par

# fit model with tau2=0
res0 <- optim(par=c(8,0.4), llfun, yi=am.df\$es, vi=am.df\$var, x=am.df\$CNr, random=FALSE, hessian=TRUE)

# LRT of H0: tau2=0
x2 <- -2 * (res0\$value - res\$value)
x2 ### test statistic
pchisq(x2, df=1, lower.tail=FALSE) ### p-value

# compute standard errors
vb <- chol2inv(chol(res\$hessian))
se <- sqrt(diag(vb))

# ignore SE for tau2
se <- NA

# estimates, standard errors, z-values, and p-values
data.frame(estimate=round(res\$par,4), se=round(se,4), zval=round(res\$par/se,3), pval=round(2*pnorm(abs(res\$par/se), lower.tail=FALSE),5), row.names=c("p1","p2","tau2"))

# Function to predict the nonlinear effect size (ES)
ESpred <- function(x) {
p1 <- res\$par
p2 <- res\$par
p1*exp(-p2*x)
}

# Function to predict the nonlinear standard error (SE)
SEpred <- function(x) {
p1 <- res\$par
p2 <- res\$par
g <- matrix(c(exp(-p2*x), -p1*exp(-p2*x)*x), ncol=1, nrow=2)
vb <- vb[1:2,1:2]
c(sqrt(t(g) %*% vb %*% g))
}

I wouldn’t be able to figure out this myself in my entire life, so I really appreciate the help. However, now I don’t really know how to modify this code to accommodate F.
My question is: how can I incorporate a factorial moderator in these functions?