[R-meta] Why am I getting different means when conducting multilevel meta-analysis with factorial moderator vs. as subgroups?
Maximilian Theisen
Theisen at stud.uni-heidelberg.de
Wed Apr 18 18:09:12 CEST 2018
Hello!
I am conducting a multilevel meta-analysis using metafor in R. I have
effect sizes ("esid") nested within samples ("sampleid") nested within
publications ("studyid"). I have four subgroups ("task.type").
The mean effect sizes for each subgroup differ depending on whether I
use task.type as a moderator or run the rma.mv command for each subgroup
independently.
This is the code I use with task.type as moderator:
multi.task <- rma.mv(yi=g, V = var.g, data=df, random=list(~ 1 | esid,
~1 | sampleid, ~1 | studyid), mods=~factor(task.type)-1)
Multivariate Meta-Analysis Model (k = 142; method: REML)
Variance Components:
estim sqrt nlvls fixed factor
sigma^2.1 0.0942 0.3069 142 no esid
sigma^2.2 0.7769 0.8814 29 no sampleid
sigma^2.3 0.0000 0.0001 25 no studyid
Test for Residual Heterogeneity:
QE(df = 138) = 950.2971, p-val < .0001
Test of Moderators (coefficient(s) 1:4):
QM(df = 4) = 29.9283, p-val < .0001
Model Results:
estimate se zval pval ci.lb ci.ub
factor(task)1 0.6072 0.2360 2.5729 0.0101 0.1446 1.0697 *
factor(task)2 -0.5173 0.2559 -2.0212 0.0433 -1.0189 -0.0157 *
factor(task)3 0.5755 0.2048 2.8100 0.0050 0.1741 0.9769 **
factor(task)4 0.6173 0.4333 1.4246 0.1543 -0.2320 1.4665
This is the one I use when computing the model for each task.type
individually:
task.X <- rma.mv(yi=g, V = var.g, data=df, subset=(task=="X"),
random=list(~ 1 | esid, ~ 1 |sampleid, ~ 1 | studyid))
Task 1:
Multivariate Meta-Analysis Model (k = 27; method: REML)
Variance Components:
estim sqrt nlvls fixed factor
sigma^2.1 0.1685 0.4105 27 no esid
sigma^2.2 0.1307 0.3616 7 no sampleid
sigma^2.3 0.1307 0.3616 7 no studyid
Test for Heterogeneity:
Q(df = 26) = 115.1759, p-val < .0001
Model Results:
estimate se zval pval ci.lb ci.ub
-0.0649 0.2289 -0.2836 0.7767 -0.5135 0.3837
Task 2:
estimate se zval pval ci.lb ci.ub
0.3374 0.6983 0.4832 0.6290 -1.0312 1.7060
Task 3:
estimate se zval pval ci.lb ci.ub
0.3862 0.1254 3.0808 0.0021 0.1405 0.6319 **
Task 4:
estimate se zval pval ci.lb ci.ub
0.6126 0.3409 1.7971 0.0723 -0.0555 1.2807 .
Why are the results so different?
Best,
Max
More information about the R-sig-meta-analysis
mailing list