[R-meta] Help with interpretation please?
Paul Cuckoo
paul.cuckoo at gmail.com
Sun Jul 23 12:23:58 CEST 2017
I'm using the metafor package in R to attempt to model the impact various
covariates have on an uplift score.
> head(data.test)
Cell.No. brand_lift_ppt experiment_variance vertical_name
Gender age_targeting_min1 0.01002470 0.000251804
[Entertainment & Media] A 352 0.01343524
0.000119650 [Entertainment & Media] M 183
0.01601813 0.000352114 [Entertainment & Media] F
184 0.17279558 0.000275272 [Entertainment & Media]
F 185 0.14091904 0.000203351
[Entertainment & Media] M 186 0.13449727
0.000202170 [Entertainment & Media] A 35
I specify the model as follows:
model1 <- rma(data=data.test, yi=brand_lift_ppt, vi=experiment_variance,
mods = ~ vertical_name)
summary(model1)
and get the following output:
Mixed-Effects Model (k = 375; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
500.9043 -1001.8086 -985.8086 -954.5439 -985.4075
tau^2 (estimated amount of residual heterogeneity): 0.0031 (SE = 0.0003)
tau (square root of estimated tau^2 value): 0.0558
I^2 (residual heterogeneity / unaccounted variability): 86.70%
H^2 (unaccounted variability / sampling variability): 7.52
Test for Residual Heterogeneity:
QE(df = 368) = 2703.1344, p-val < .0001
Test of Moderators (coefficient(s) 1:7):
QM(df = 7) = 253.9762, p-val < .0001
Model Results:
estimate se zval
pval ci.lb ci.ub
vertical_name[Automotive] 0.0398 0.0081 4.9171
<.0001 0.0239 0.0556 ***
vertical_name[Consumer Packaged Goods] 0.0510 0.0050 10.1589
<.0001 0.0412 0.0609 ***
vertical_name[Entertainment & Media] 0.0642 0.0071 9.0057
<.0001 0.0502 0.0782 ***
vertical_name[Retail] 0.0559 0.0087 6.4059
<.0001 0.0388 0.0730 ***
vertical_name[Technology] 0.0063 0.0335 0.1875
0.8513 -0.0593 0.0719
vertical_name[Telecom] 0.0226 0.0112 2.0273
0.0426 0.0008 0.0445 *
vertical_name[Travel] 0.0239 0.0428 0.5580
0.5768 -0.0600 0.1078
I'm having trouble interpreting the output to get to what I need. Some
questions:
1) Entertainment and Media appears to be significant. How do I interpret
the coefficient? I haven't logged or otherwise transformed any of the data.
Is it simply that when I select Entertainment and Media, I see on average a
6.42% brand uplift?
2) How can I get an overall estimate of the impact of vertical media,
relative to other covariates, say gender? A ratio of QM score?
3) Should I be combining all factors together in mods or is it acceptable
to test separately?
4) Under what circumstances should I be considering a transformation to
brand_lift before modelling?
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list