ROBUST INFERENCE IN RATING
MODELS

Gilles DUPIN ! Alain MONFORT 2 and Jean-Pierre VERLE 3

ASTIN topic : Risk evalution

Abstract.

Various sources of inconsistency are identified in usual statistical rating
models. Several semiparametric methods, which are more robust with respect
to specification errors, are proposed. In particular, the Pseudo Maximum
Likelihood Methods, the Generalized Method of Moments and the Asymtotic
Least Squares Methods are used in a new approach of a priori and a posteriori
rating. An empirical implementation, based on data from Groupe Monceau,
is discussed.

Keywords :

Inconsistency, Robustness, Misspecification, Semiparametric Methods,
Pseudo Maximum Likelihood Methods, Generalized Method of Moments,
Asymptotic Least Squares Method, A Priori and A Posteriori rating.

! General Manager, Monceau-Assurances, Paris France

2Conservatoire National des Arts et Metiers, and CREST-INSEE, France Address :
Alain MONFORT - CREST - 15 Bd Gabriel Péri - 92245 Malakoff France - Phone :
+33141177728 - Fax : 33141177666 - Email : monfort@ensae.fr

3Consultant actuary, Société Européene d’Actuariat Dommages, Paris



1. INTRODUCTION

The standard statistical rating models are particular cases of conditional
parametric models. More precisely, in these models we consider, for each
observation i, a vector of endogenous variables Y; (typically the number and
the size of the claims for which policyholder 7,2 = 1,...,n, is responsible
during one or several time periods) and a vector of exogenous variables X;;
then the true conditional probability density function of Y; given the observed
value z; of X, f,(y;/x;), is assumed to belong to a given parametric family
{f(yi/x;;0),0 € O} and inference methods, usually based on the Maximum
Likelihood (ML) theory, are implemented in order to derive estimators of
the quantities of interest, typically the conditional moments of ¢(Y;) given
X; = z;, where g(.) is some given function.

The aim of this paper is threefold. First we identify sources of potential
inconsistency in this standard approach. Indeed the estimator of the quantity
of interest may be inconsistent when n goes to infinity, as soon as the model
is misspecified, that is to say when f,(y;/x;) does not belong to the family
{f(yi/x;;0),0 € ©}. We stress several reasons for which such a misspecifi-
cation may occur, in particular error on the shape of the p.d.f. retained for
subvectors of Y}, error in homoscedasticity assumptions for these p.d;f. or
error in independence assumptions made about some components of Y; and,
therefore, errors on the joint p.d.f. of Y;.

The second objective of the present paper is to propose methods aim-
ing at reducing this inconsistency risk. The recent econometric literature
proposes three routes for this purpose. The first one is the nonparametric
approach. In rating models it would consist in estimating nonparametri-
cally the conditional moments of ¢(Y;) given X; = x;; however this method
cannot be used in practice because of the large dimension of X; which, more-
over, always has qualitative components ruling out the kernel methods. An-
other approach consists in staying in a parametric framework and in con-
siderably increasing the size of the parameter #; these methods, sometimes
called semi-nonparametric, have been used for modeling frequency compo-
nents [see Gourieroux-Monfort (1997)] but their generalisation to both fre-
quency and severity components is not obvious. The third approach, which
will be followed here, is the semiparametric approach, in which we do not
make assumptions about the conditional p.d.f. of Y; and, instead, we speci-



fied directly the conditional moments of interest. In such a framework, the
likelihood function no longer exists and we have to propose other methods.
Here we will consider the Pseudo Maximum Likelihood Methods White 1981,
and Gourieroux, Monfort, Trognon 1984 a), the Generalized Method of Mo-
ments (Hansen, 1982) and the Asymptotic Least Square Methods (Gourier-
oux, Monfort, Trognon 1985).

Finally, the third objective of this paper is to discuss applications of these
methods to real data from Groupe Monceau.

The paper is organised as follows. In section 2 we discuss the inconsis-
tency problem, using several examples. In section 3 we consider standard
rating models and show that they are exposed to this inconsistency risk.
Section 4 provides an overview of semiparametric methods. In section 5 we
propose a semiparametric framework for a priori rating models. Section 6
considers the case of a posteriori rating models. A discussion of the practical
implementation of a priori rating models is presented in section 7. Section 8
concludes.

2. SOURCES OF POTENTIAL INCONSISTENCY

We know that the maximum likelihood (ML) estimator, which maximises
the likelihood function [[7,(f(yi/z;0), is asymptotically efficient but may
be inconsistent if the model is misspecified, that is to say if the true p.d.f
fo(yi/x;) does not belong to the family {f(y;/x;;60),0 € O} on which the
likelihood function is based. In a misspecified situation the ML estima-
tor generally converges to a pseudo true value #* [see Gourieroux, Monfort,
Trognon 1984a] and the conditional moment of a function of interest g(Y;)
given X; = x; based on the p.d.f. f(y;/z;;0%) may be very different from
the true value of this conditional moment. So the price we have to pay for
efficiency is the risk of inconsistency. We first consider this efficiency v.s.
robustness trade-off. Then we show that, even if the parametric approach is
abandoned, a misspecification of the link between endogenous variables may
generate an inconsitency problem.

2.1 The efficiency v.s. robustness trade-off

In order to illustrate the efficiency-robustness trade-off, let us discuss two
simple examples. The first example considers the case of IID (Independently



Identically Distributed) variables, whereas the second one deals with a con-
ditional model (given exogenous variables)

An I.I.D. Case

We have observed n IID positive random variables V;,z = 1,...,n. We
assume that the common distribution of the Y/s is log-normal, i.e. that the
distribution of Log Y; belongs to the family N(m,o?). It is well-known that
the Maximum Likelihood (ML) estimator of m, and o2 are asymptotically
efficient. They are given by :

1
m, = —Xi,Logl;
n

1 n
~9 _ L Y_ ~AN\2
A= L (oY)

Now suppose that we are interested in the true expectation of Y; (denoted
2

by p,. Within the model this expectation is given by exp(m + %) and we

~2
On

may propose the ML estimator exp(ri, + ?)

Let us now assume that the model is misspecified and that the distribution
of Y; is the standard exponential probability (which does not belong to the
log-normal family). The true mean of Y; is equal to 1, and it is easily seen

52
a

that exp [ m,, + 7”) converges to the pseudo-true value :

. *+O.>k2
xp | m
P 2

where m* and ¢*° are the mean and the variance of Log Y;, when Y; is ex-

ponentially distributed. The distribution of Log Y; is a Gumbel distribution

(the density of which is exp(z —exp(x)), and this implies that the limit of in-
2

2

terest is equal to exp (—0.577 + %) = 1.28. So the ML estimator which has

optimal properties if the model is well specified, may be severely inconsistent,
if the model is misspecified ; in the example considered here the asymptotic
bias is equal to 28 %. Of course, a robust estimator of the true expectaiton
of Y; is the empirical mean Y, which is always consistent. If the model is well



specified the asymptotic variance of /n (Y, —i,) is exp(2m,+02)[exp(c?)—1],
%

which is larger than the asymtptotic variance of \/ﬁ[exp(mn+%) —[4o], which
4
is equal to exp(2m, + 02)[02 + %] So the trade-off is clearly explicited.

A conditional model

We postulate that, conditionally to positive exogenous (IID) variables z;,
the endogenous positive variables y; are independently distributed and that
Log Y; follows N (a + bz;, 02). The ML estimators dy, by, 52 of a b and o2 are
given by the ordinary least squares method. Now let us assume that the true
distribution is indeed lognormal but with heteroscedasticity ; more precisely
let us assume that the true distribution of Log Y; is N(a, + byx;, ¢, + dox;)
(with ¢, > 0,d, > 0). It is readily seen that a, converges to a,, by, converges
to b, and 62 converges to ¢, + d, EX].

If we are interested in the mean effect of X; on Y;, measured by the true
conditional expectation

1 1
Eo (Y;/Xz - xz) = €exp |:ao + 500 + (bo + Qdo)xz:| )

n

- 1
we will propose the ML estimator exp (&n + by + 5&2> which con-

verges to expla, + 5(00 + d,EX1) + b,x;], and the estimator is inconsitent.

In particular the coefficient of x;, which is crucial in a scoring problem, will
be badly estimated (asymptotically underestimated here since d,, is positive);
similarly the estimator of the intercept will be also inconsistent (and asymp-
totically overestimated).

2.2 Misspecification of the links between endogenous variables.

Let us assume that Y; is made of NV;, the number of claim, and (S;;) the
size of the claims. We are interested in the expectation of the total claim
amount :

N;
Ci=> Su
k=1



If we assume that N; and (S;;) are independent and that the Sy, are IID
we have :

me = EC; = E[E(C;/Ny)
= mgmn
where mg = ES;;, and my = EN;.

So we may estimate m¢ by NS where N is the empirical mean of the N;
and S the empirical mean of the S;;.

Now if, in fact, V; and (S;) are independent conditionally to a positive

latent variable U; and if E(N;/U;) = AU;, E(Si/U;) = uU;, we have, using
the notation my and o for the mean and the variance of U; :

me = E(C;) = FE[E(C;/N;,U;)]
= pk(N;U;)
= pE[U;E(N;/U;)]
= Au(mi +op)
The estimator NS of m¢ converges to :

EN;ES; = \um3,

and therefore is asymptotically biased. More precisely NS understimate m,
the asymptotic bias being Ao

3. THE PARAMETRIC NATURE OF THE CLASSICAL RAT-
ING MODELS .

As shown in this section all the classical rating models are parametric
and, therefore, exposed to the inconsistency risk.

3.1 Models based on frequency



The more popular model based on frequency is the Poisson model, in
which the number of claims N;, for which policyholder 7 is responsible during
a given period, is assumed to follow the Poisson distribution Plexp(z0)],
where x; is a vector of exogenous variables (for sake of notational simplic-
ity we omit the time index). It turns out that, fortunately, the Poisson
model is robust to specification errors, in the sense that the ML procedure
based on this model is consistent and asymptotically normal even if the
true distribution is not Poisson, provided that the conditional expectation
Ey[N;/z;] = exp(x}0) is well specified. However care is needed in the com-
putation of the asymptotic variance-covariance matrix and, therefore, in the
testing procedures (see section 4).

Moreover the a priori rating based on the Poisson model is sometimes
completed by an a posteriori rating in which the conditional distribution of
N; given x; and an individual unobservable (positive) effect U; is assumed
to follow the Poisson distribution P[U; exp(x;0)]. Since U; is unobservable it
has to be integrated out, in order to obtain the conditional distribution of
N; given x; only. At this stage, the distribution of U; is usually assumed to
be Gamma in order to get a tractable conditional distribution of N; given
x;, namely a Negative Binomial distribution, and, consequently, a tractable
likelihood function. It is clear that the latter assumption is rather arbitrary
and that the misspecification risk is high. In the semi nonparametric a priori
rating models, the a posteriori component is often assumed parametric in
order to have the opportunity to use simulation based econometric methods
(see Gourieroux-Monfort 1996 and 1997).

3.2 Models based on frequency and severity.

The misspecification and, therefore, inconsistency risk is higher in the
models based on frequency and severity because they usually rest on a long
list of untested assumptions. In the standard approach it is assumed that :

- the number of claims NV, is distributed as Plexp(z;b)]

- the sizes of the claims S, are independently log-normally distributed

- the distribution of Log Sj; is N|xic,0?] in particular, this distribution
is homoscedastic

- N; and the (S;) are independent, conditionally to the exogenous vari-
ables.



In this model the total claim amount is :

N;
Ci=) S
k=1

and the pure premium is :

52
= exp [x;(b +c) + ?}

Clearly this formula heavily depends on the assumptions made above,
in particular log-normality, homoscedasticity and independence (see section
2.1. above).

The situation is even more serious in a posteriori modeling based on fre-
quency and severity. In this kind of approach additional ad hoc assumptions
are made about the distribution of heterogeneity term introduced in the
modeling of Sj;, (for instance inverse gamma in Frangos-Vrontos (2001)) or
Log Six (for instance Gaussian in Pinquet (2001)) or in the modelling of the
conditional behavior of C; given N; (Gamma in Gourieroux (1999 Chapter

8)).

4. AN OVERVIEW OF RELEVANT SEMIPARAMETRIC IN-
FERENCE METHODS

4.1 The basic problem

The econometric literature has proposed a large set of semiparametric
methods which do not necessitate assumptions about the probability distri-
butions in order to get a CAN (Consistent Asymptotically Normal) estimator
of the parameter 6 characterising conditional moments. In this section we
propose a brief summary of the methods which are relevant for solving the
basic problem of rating models. This basic problem is to estimate pure pre-
mia and therefore to estimate the true conditional expectations E,(C;/x;).
So, in the a priori modelling, the only assumption needed is to postulate that
this unknown functin of x; belongs to some family m(x;,#), where m(.) is
known and 6 is an unknown p-dimensional parameter. The case of a poste-
riori modelling will be discussed in section 6.



4.2. Extremal estimators

All the relevant estimators will be extremal estimators. An extremal
estimator 0, is, by definition, obtained by maximizing and an objective func-
tion @Q,(Y,X,0) where Y = (V3,...,Y,), X = (Xy,...,X,). Under tech-
nical conditions this estimator is consistent if the limit function Q. (f) =
limy, 00 @n (Y, X, 0) exists and has a unique maximum at the true value 6,
(see Gourieroux-Monfort chapter 24). Moreover /n(f — 6,) is CAN and the
asymptotic variance-covariance matrix is X(6,) = J~'(6,)I(0,)J~"(6,) where

0*Qoo(0,)

J(0,) = 2000 and 7(6,) is the asymptotic variance-covariance matrix
1
f—Qn,.
0 \/ﬁQ

4.3. Pseudo Maximum Likelihood (DML) Methods

These methods have been developed by Gourieroux, Monfort and Trognon
(1984 a and b). We focus here on one of these methods : the pseudo maximum
likelihood method of order 1 (PML1). In this approach the only assumption
made is precisely the one we are interested in, i.e. that E,(y;/z;) belongs to
a given family m(z;, #), that is to say that E,(y;/z;) = m(x;,6,) for a unique
6,. The main idea is to find a family f(y, m) of probability density functions
(p.d.f.) indexed by their mean m, such that the pseudo likelihood function
[T, (yi, m(x;,0)) based on this family provides, when maximized, a CAN
estimator én of 4,.

The basic result is that this result holds if, and only if, f(y, m) is a linear

exponential family, that is if it can be written :

f(y,m) = exp[A(m) + B(y) + C(y)m]

for some functions A,B,C.

This condition is true for some standard families, in particular the Gaus-
sian family N (m, 02)(o? fixed at any positive value), the Poisson family P(m)

and the Gamma family v(a,, —) (where «, is fixed at any positive value).
o

o
The objective functions in these three cases are respectively :



n

=D [y~ m(wi, 0 /o,

i=1

n

Z y; Log m(z;,0) — m(x;,0)]
i=1

—Z [ + Log m(x;,0)| a,

Note that the values o and «aq are irrelevant in the maximisation and
can therefore be dropped; also note that in the PML method associated with
the Poisson and the Gamma familier m(z;, #) must be positive.

All these methods provided CAN estimators, whatever the true distribu-
tion is. The asymptotic variance covariance matrices of the estimators must,
however, be computed with the formula of section 4.2 (sometimes called the
robust formula) and not with the inverse of the information matrix.

It is seen, in particular, that, as announced previously, the Poisson family
is robust with respect to misspecifications on the distribution.

4.4 Generalized Method of Moments (GMM)

This method has been proposed by Hansen (1982) and we specify it in
the context of interest here.

The basic assumption of existence and uniqueness of a 6 (denoted 6,) sat-
isfying E,(y;/x;) = m(x;, ) can be reformulated as existence and uniqueness
of a 6 satisfying :

Eo{A(zi)lyi — m(;,0)]} =0

for a K-vector A(z;) of ”instruments” (with K > p). When the number K
of instruments is equal to the number of parameters (a condition which is
not restrictive, see 4.5) the GMM reduces to minimizing :

|IZA(Ii)[ m(;, 0)]||?

where ||.|| is the usual norm in IRP.

10



or to solve :

ZA(SUZ-) lyi —m(z:,0)] =0

The estimator thus obtained is CAN and its asymptotic variance-covariance
matrix is given by the formula of section 4.1 (see Gourieroux-Monfort, chap-
ter 9, for more details).

[t turns out that, in this case, the asymptotic variance covariance matrix
is :

-1
{EX1 [WA’(XI) {Ex, [AX)V,(Yi/X)A'(X)]} ' Ex, [A%(Xl,oo)]}

The semiparametric efficiency bound

It can be shown (see Gourieroux-Monfort (1996 chapter 23)) that all
the semiparametric estimators of #,, and in particular the PML1 and GMM
estimators introduced above, have an asymptotic variance-covariance matrix
which is larger than a semiparametric efficiency bound given here by :

([ 800, 250]

An obvious question is : how to reach this bound ? As far as the GMM
method is concerned, comparing this bound with the formula of the asymp-
totic variance-covariance matrix given in section 4.4, we see that the optimal
instruments are given by :

am(XZ, 90)
00

However these instruments are not feasible since 6, is unknown (but we
could replace it by a consistent estimator) and, more importantly, V,(Y;/X;)
is unknown and not specified. If we want to go further we could assume that
V,(Y;/X;) belong to some parametric family, but this would contradict our
robust approach, or we could estimate V,(Y;/X;) by nonparametric kernel
approaches but, in practice, we would face the ”curse of dimensionality”
problem.

AN(X)) = vV, Y/ X)

11



A pragmatic approach consists in choosing a set of instruments which is
likely not too far from the optimal one and which leads to easily computable
and easily interpretable estimators. It is important to stress that, in any
case, the estimators are CAN.

The attainability of the bound in the PML framework can also be dis-
cussed by using the Quasi Generalized PML approach [see Gourieroux-Monfort-
Trognon 1984 a]. In particular it is easily that the three PML1 methods
considered above are optimal in the following cases :

V,(Y1/X1) constant for the Gaussian case.
V,(Y1/X1) proportional to m?(Xy,0,) in the Gamma case

Moreover it is easily seen that in the special case where m(Xy,0) =
exp(X160), the PML1 method based on the Poisson family is optimal if
V,(Y1/X;) is proportional to m(Xy, ).

4.6 Asymptotic Least Squares (ALS)

This method has been proposed by Gourieroux-Monfort-Trognon (1985).
It allows for estimating and testing an auxiliary parameter A defined from
6 by nonlinear restriction b(f, A\) = 0. Here we restrict ourselves to the case
where the previous constraints are :

=S5\

where S is a matrix (made of 0 and 1) such that each 6; = S;\ is either 0
or a component of A\. In other words A is obtained from € by putting some
components to zero.

The ALS method provides, in this case, a very convenient method for
testing hypotheses of the form § = S\ and estimating A, in any of the
semiparametric methods proposed above. Denoting by én the unconstrained
estimator and ¥ a consistent estimator of the asymptotic variance-covariance
matrix J 1 (0,)1(6,).J 1 (6,) (see section 4.2), an equivalent model is the linear
model 0, = 0+ u where u is zero-mean and has a covariance matrix equal to

—, or equivalently :
n

12



Mén = MO +v

)
n

Constrained estimation of # and tests on 6 can be performed in this
7asymptotic” model, in the usual way (¢ tests, or Wald tests ) and are
asymptotically equivalent to the corresponding constrained estimation and
tests within the semiparametric procedure used for obtaining 0,

with Ev  =0,V(v)=1, MM =

The huge advantage of this method is that the estimation or testing pro-
cedures in the linear model are considerably faster than their equivalent in
the initial semiparametric framework (PML or GMM here).

5. ROBUST INFERENCE FOR A PRIORI RATING MODEL
5.1 A multiplicative specification

In order to try to avoid the misspecification problems discribed in section
2, it is natural to specify only the function of interest, namely the conditional
expectation F,(C;/z;),C; being the total claim amount and z; a vector of
exogenous variables. We assume here that F,(C;/x;) belongs to the family
{exp(z}0),0 € IRP} in order to have a usual multiplicative formula. In other
words, the function m(z;, #) introduced in section 4 is exp(x;f)

5.2 Semiparametric inference

We know that all the methods proposed in section 4 provide CAN esti-
mators of 6,, the true value of . However we might want to go further in
the direction of optimality.

From the results of section 4, we know that the unfeasible optimal instru-
ments in the GMM approach are :

zi exp(aifo) V, ' (Yi/ )

where V,(Y;/X;) is the true conditional variance of ¥; given X;. This optimal
set of instruments is unknown because 0, and V,(Y;/x;) are unknown. The
true value 6, can be replaced by any first stage consistent estimator 0,. As
far as V,(Y;/X;) is concerned, we might impose a parametric specification,

13



for instance exp(z}y), and estimate ¢ by a semiparametric method applied
to (C; — exp(z/0,))%. However this approach increases the set of assump-
tions, and moreover, it is known that two stage procedures may have bad
finite sample properties. A more pragmatic approach consists in considering
important particular specifications leading to one stage procedures. Three

particular cases are natural :

A : V,(Y;/x;) constant
B : V,(Y;/X; proportional to m(z;,0,) exp(z};0,)

C : V,(Y;/X;) proportional to m?(x;,0,) = exp(2z.0,)

In case A the gaussian PML1 method i.e. the nonlinear least squares
(NLS) method, reaches the semiparametric efficiency bound ; this method
n

consist in minimizing Z(Y; —exp(z10))%. The GMM method would lead to a
i=1

two stage method with the instruments z; exp (0, ) and is not recommenced.
In case B, the optimal instruments are simply x; and therefore a one step

method in avalaible. Moreover this method is equivalent to the Poisson PML1

method. Tt is also interesting to note that these methods are asymptotically

equivalent to the weighted nonlinear least square method (WNLS) in which

we minimise :

"L (Y; — exp(2}6))?
Z( p(;0))

exp(x;-én)

=1

In case C the optimal instruments are z; exp(—xgén and necessitate a
two stage procedure. Fortunately this method is equivalent to the one stage

Gamma PML1 method. Note that it is also equivalent to the WNLS method
in which we minimise :

" (V; — exp(z}0))?
Z( p(z;0))

exp (220,

=1

The range of the relative weights is larger than in the previous case.

So in all the cases, a one stage method is available.

14



A natural benchmark method is method B, which is based on intermediate
assumptions on the conditional variance and which is implicitely assuming
an intermediate range of relative weights in the WNLS method.

Moreover the GMM method applied in case B) implies

in(Y; — exp(x16,)) = 0
i=1

So if x; is made of dummy variables corresponding to various classes of a
qualitative variable, we have for any such class

D yi=Y exp(xihy)
iel i€l
where I is the set of policyholders belonging to this class. In other words
the rating is fair for all these classes.

These properties are summarized in the following array :

Semiparametric | Optimality Optimal GMM | Optimal PML1 | Optimal weights
method condition on | instruments method in WNLS
Vo(Yi/xi)
A Constant zjexp(ziby) Gaussian 1
B Proportional | z; Poisson exp(—xz.6p)
to exp(z}0,)
C Proportional | z; exp(—z6,) | Gamma exp(—2z.6,)
to exp(2z:6,)

5.3 Wald test based on Asymptotic Least Squares

Once parameter # appearing in exp(z.f) has been estimated by one of
the semiparametric methods proposed above, we have a consistent estima-
tor 6, such /n(f, — 6,) is asymptotically distributed as N[0, £(6,)] where
S(6,) = J 1(0,)I(0,)J 1(0.) If &, is a consistent estimator of ¥(6,) we can
easily test any null hypothesis on 6,, using the asymptotic linear model de-
scribed in 4.6. So we can propose a fast downward variable selection proce-
dure. Starting from a maximal set of possible variables, we reject at each
the one which is the less significant. Note that each variable may appear

15



through several elementary variables (dummies in the qualitative case, pow-
ers of the variable in the quantitative case) and that, in this case, we test the
simultaneous irrelevance of all these variables. A natural rejection criterion
at each step is the highest p-value, the p-value being the minimal probability
of wrong acceptation we have to impose in order to accept the variable (the
acceptation of variable meaning the rejection of the hypothesis of nullity of
the corresponding components of ). We stop the procedure when all the
remaining p-values are smaller than a given threshold, for instance 5%.

Even if the number of tests is high this procedure is fast because we can
use standard tests of the linear model. This would not be true in an upward
procedure.

6. SEMIPARAMETRIC A POSTERIORI RATING
6.1. The setup

The endogenous variable of interest for policyholder 7 and period ¢ is de-
noted by Yj;; it might be a number of claims or a total claim amount. For
each policyholder ¢ we introduce a positive latent variable U; measuring an in-
dividual unobservable effect and exogenous variables x;;. We denote by n the
number of policyholders, by T the number of periods (assumed independent
of i for sake of notational simplicity) and by Y; the vector (Yjq,...,Yr).

We assume that the Uls are IID and independent of the exogenous vari-
ables. We also assume that, conditionally to the Us and the exogenous
variables, the Y}, are independent and we specify the conditional means and
variances as follows :

E(Yi/i,wi) = uiliy

V(Yi/wi,ui) = alui)fi
where \;; and fi; are parametric functions of x;, for instance exp(z},b) and
exp(x},¢) respectively and a(u;) is some positive function. For obvious iden-

tification reasons we can always assume that E(U;) = 1 and we denote V(U;)
by o2.

Under these assumptions we have :

16



E(Yit/fﬂz't) = i
V(Yi/zi) = V(Uki) + Ela(Us) fi]

= 02)‘?:5 + it
where uy; = 13 E[a(U;)] (the constant Ela(U;)], which may be non identifi-
able, is incorporated in the specification of fi;; if fi;; = exp(x},¢) this reduces
to a change of intercept and we note j;; = exp(z},c)) and :
cov(Yip, Yis/Tir, vis) = E{cov[(Yir, Yis)/Tir, Tis, Wil /Tir, is }

+  cov{[E(Yi/ir, wi), E(Yis/Tis, wi] [ Tir, Tis }

= cov [(Uilir, Uikis) [ Tir, Tis]

= UZ}‘ir)\is

Applying the particular cases A,B,C considered in 5.2 to the conditional
variance V' (Yj;/x;,u;), we obtain three particular specifications for u; =
E[V(Y;t/xitaui)] :

Acpy = ¢
B :py = CE(Yit/IEz't,Uz') = cA\it
C :py = E(Yy/xy, u;)? = e\ EU?
= cAjj(say)
6.2. Estimation
Since E(Y;/xy) = A\, the parameters appearing in A\ (for instance b
in exp(zib)) can be consistently estimated by any semiparametric method

proposed in section 4, applied to Y;;. We get estimators A;; of A\;;.
o? can be consistently estimated, for instance, by the mean 62 of empirical

. ir is
covariances between — and —,s # r.

ir 1]

17



Finally the parameters appearing in p;; can be consistently estimated by
any semiparametric method of section 4 applied to Y;7 — \2,(1 + 62)

6.3. Optimal Bonus-Malus coefficients

Since we do not have made assumptions about the probability distribu-
tions we cannot compute the conditional expectations E(Y; r+1/Y:, i1, . . ., Tiz41)
but we can compute the best prediction linear in Y;. For sake of notational
simplicity we now omit subscript ¢ and the conditioning with respect to the
exogenous variables. The best linear prediction of Y7, given Y will be de-
noted by EX(Yr,,/Y).

We have :
E*(Yr)Y) = EYryy + cov(Yry, V)IV(Y)]H(Y — EY)
with :
EYrin = Ay
EY = (A,..., A7) = A
cov(Yry,Y) = o?ApN
V(Y) = o*AN + diag(p)
where = (p1, ..., pr)".

It is easily seen that :

o (A (Al
R BYRLC
where =", Ap~!, A\u~"/? are the vectors whose components are, respectively,

i A Ay

[V()]™ = diag(n™")

This implies :

1+o(p™)Y
L+ o2 || Apt/2 |2

EL(YT+1/Y) = )\T+1

or more, explicitely :
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T
L+0”) Ay 'Y
EL(YTH/Y) = Ari1 =

T
L2 ) A
t=1

Since
BV /Y) = EYE(YVra/Y)]
= EM{E[E(Yr,/Y,U)/Y]}
= ArnEYEU/Y)]

== )\T+1EL(U/Y)

the best linear prediction of U, is :

T
1"‘0’22)\,5,&;1%

t—1
T
Loy X!

t=1

EXUJY) = = BM

This quantity denoted by BM is the semiparametric optimal Bonus Malus
coefficient. In the case A,B,C considered above this coefficient becomes :
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T
L4027 Y
t=1

A :BM = 7
L4027ty N
t=1
T
1+o02%c! Z Y,
B :BM = t;l
1+ o2c 1 Z )\t
t=1
T
L+027 > N
C :BM = =1

1+ To2¢!
Note that if Y; is the number of claims and if the conditional distribution
of Y} given (z;, u) is assumed to be Poisson we have :

V(Yi/z,u) = E(Yy/xp,u) = ulp and py = Ny

so, we are in case B with ¢ =1 and we get
T
1+0? Z Y,
_ t=1

- T
1 +U2Z)\t
t=1

This BM coefficient is also the one obtained in the parametric case where,

BM

1 1
moreover, U is assumed to follow the distribution y(—;, =) [see Dionne-
o o

Vanasse (1992) and Gourieroux (1999)]. So, in some sense, this BM coeffi-
cient is robust with respect to the Gamma assumption about the distribution
of U but it is not robust with respect to the Poisson assumption about the
conditional distribution of Y; given (z;,u). The robustness of the Poisson
assumption in a priori rating is lost in a posteriori rating.
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Going back to the general setup, it is worth noting that, for the true value
u of U and applying the strong law of large numbers to the variables Ay, 'Y
and A2y, ' we get :

T
1 Z _ _
T t=1 it i T uBXipy!

T
1 2, 1 2, 1
T;)‘tut e EX

and
T
1 1 _
? +O’2? El )\tlﬁt IY;
BM = = s
1 21 T - T—00
T‘f‘O’ ? E )‘tut

t=1
Therefore, the BM coefficient converges to the value taken by the latent
variable U.

7.PRACTICAL IMPLEMENTATION

The a priori rating methods presented above has been applied to car
insurance data sets from Groupe Monceau. This application has shown that,
in addition to their theoretical robustness proved in the previous sections,
these methods are able to tackle the practical problems usually encountered.
Let us discuss some of these problems.

Duration

It is important to define, for each contract, a set of spells within which
the characteristics of this contact (the car characteristics in particular) do
not change. So we have to work with spells of different lengths and the ba-
sic observation ¢ becomes a spell of a given contract. If d; is the duration
of this spell (using for instance the year as time unit) the conditional ex-
pectation E,(C;/x;) is specified as d; exp(zif) or exp(Log d; + x}0), and the
semiparametric methods are easily generalised.
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Selection

The selection of exogenous variables presented in 5.3, may be based on a
partition of elementary variables, each set of this partition containing either
dummies associated with a qualitative variable or powers of a quantitative
variable. The ALS method is able to treat this case.

Discretisation

The discretisation of a quantitative variable may be based, as usual, on
its empirical distribution but, also, on the profile of its risk factor defined as
the exponential of the polynomial used in the selection procedure.

Agregation

For qualitative variables, or discretised quantitative variables, it may be
usueful to agregate the classes of the partition. For this purpose, the selection
procedure based on ASL is easily adapted to the case of testing equality of
coefficients.

Interaction

Lack of interaction is characterised by the nullity of some coefficients ;
for instance in the case of two quantitative variables the lack of interaction
may be characterised by the nullity of the coefficients of the cross terms in
the polynomial. Therefore this type of test may also be incorporated in the
ALS based selection procedure.

Outliers

Like all statistical methods, the GMM may be sensitive to outliers and
we may have to trim large claims, that are, in motor insurance, liability
claims with serious body injuries or deaths. Trimming these claims (at the
level of 100. 000 € for example) may hide the actual risk exposition of some
categories of risk (like young drivers). There is no other solution than to do
a "manual” analysis and to add a "manual” correction to the results of the
method.

Data extraction and evaluation
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Obtaining from the I'T Department of the insurance compagnies the right
data you need for your computations is not always easy : you need detailed
data with one record for each contract and one record for each claim during
the observation periods. That means some new work for the I'T departments,
which have always higher priorities... Afterwards, when you receive the data,
you have to check them, to verity the exactitude and the completion of the
extractions. There is often some work to do there.

Marketing aspects linked with an innovative tariff

Implementing such a new tariff has marketing consequences : the fact you
make tariff innovations and go away from the generally previously practiced
tariffs, makes you competitive, sometimes very competitive, in new layers of
customers, you didn’t know at all before. A usual problem is the common
and unavoidable assumption that the new risks you underwrite have the same
behaviour than the risks you have in your portfolio. This is not necessary
true. When your development is not too fast, you can correct and adjust the
tariff with the reality of the new risks. Otherwise you can be in a dangerous
situation. Another problem is the use you make in the tariff of items that had
no tariff impact before : for example the number of authorised drivers. As
long as information had no consequences on the premium, the information
you obtained was exact. But, your sales force understands quickly that, for
example, with two authorised drivers, the premium is less high than with
just one driver (because you observed on your previous statistics that the
risk with two drivers, married people, was less high than this with just one
driver) and you will have all new businesses with two authorized drivers...

Subsequent tariff updating

Another problem lies in the updating you have to do for this tariff, in order
to take the last risk statistics into account. The structure of such a tariff,
based on the multiplication of coefficients, with a relatively large number
of variables (commonly 10 to 20) has a consequence, when you update the
coefficients : some risks can see their premium becoming significantly higher
or smaller. Even if you can calibrate the premium you ask in a renewal of
contract for clients already in portfolio, for new businesses, when you have
sales forces that position their sales efforts in particular directions, they can
be disoriented when your updated tariff makes suddenly specific categories
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of insured unattainable, and other categories, ignored until this moment,
accessible. Sales forces do not like changes.

These disadvantages of such a ”mathematical tariff”, you update contin-
uously with the reality of the risk, do not exist with direct selling.

8. CONCLUSION

The methods proposed in this paper are promising since they feature both
theoretical robustness properties and practical flexibility. They can be used
for a priori, a posteriori, or mixed rating models. The a posteriori aspect has
not yet be experimented on real data and could been an interesting topic for
further research.
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