[Rsighpc] Problems in applying parallel and GPU(cuda) computing for time efficient backtesting
Dirk Eddelbuettel
edd at debian.org
Sat Jul 11 14:43:52 CEST 2015
On 11 July 2015 at 16:07, 潘毅 wrote:
 Hi, I just started to learn how to program in Cuda C/C++ and did go through several sample programs (like the vector add, stencil_1d, matrix multiplication and some others) to get the ideas of the basic concept of Cuda (like block, threads, index etc).

 We would like to figure out how fast it would be to apply the cuda in stock stategy backtesting and do some simple tasks like generate (exponential) moving average series, breakout strategy from a long stock price time series. And I figured out that the most efficient way to do this performance task is to get a large number of stocks (say 20,000) and assign the tasks on each stock to each block/thread.
You won't get all that data onto the card.
So you will have to do it in parts, and you are likely the hit the "wrong
side" of the communication versus computation tradeoff as the computation is
pretty simple.
Dirk
 Here is a simple Breakout strategy:
 inputs: x(20),y(10) ;
 Vars: V20(10),V10(10),N2(10),N1(10),N(10);
 V20=Volatility(x)of data2;
 V10=Volatility(y)of data2;
 if V10<>0 and N2<>0 then beginN1=(N*V20)/V10;
 N2=IntPortion(N1);
 value1=Average(high of data2,N2)of data2;
 value2=Average(low of data2,N2)of data2;
 if close crosses above value1 then beginbuy next bar at market;end;
 if close crosses below value2 then beginsellshort next bar at market;end;


 I was looking for similar examples for quite a while, but found nothing. Please let me know if you know how to apply parallel computation with respect to each stock to run the above pseudo code / should we simply apply parallel computation on each time series if it is possible. Or have you seen any existing example?? Please give me the code if you have.
 [[alternative HTML version deleted]]

 _______________________________________________
 Rsighpc mailing list
 Rsighpc at rproject.org
 https://stat.ethz.ch/mailman/listinfo/rsighpc

http://dirk.eddelbuettel.com  @eddelbuettel  edd at debian.org
More information about the Rsighpc
mailing list