<style type='text/css'>.TerraceMsg { font-size: 12px; font-family:Dotum, Arial, Verdana, Sans-Serif;}.Bold { font-weight: bold; }</style><div class='TerraceMsg'><p>I have dataset contains hourly Particulate matter concentrations (PM10) of 1 march2012,1.00 am for 104 sites. Please download from <a href="https://drive.google.com/file/d/0ByY3OAw62ESha3pQdzRXbUZNSFU/view?usp=sharing" target="_self">HERE</a>. My ultimate goal is to do ordinary Kriging (spatial kriging) analyses for this dataset. As far as I know, I need to plot a isotropic variogram for kriging analysis. For this purpose, I have plotted a omnidirectional variogram with following R code using gstat package: </p><p> </p><p>#######################################################<br>#Plotting semi-variogram for 1 march,1.00 am>>seoul311<br>#######################################################</p><p>library(sp)<br>library(gstat)<br>library(rgdal)</p><p> </p><p>seoul311<- read.csv("seoul311.csv")<br>seoul311<-na.omit(seoul311)<br>coordinates(seoul311)=~LON+LAT</p><p> </p><p><strong>#assign a CRS</strong><br>proj4string(seoul311) = "+proj=longlat +datum=WGS84" </p><p> </p><p><strong>#Reprojecting data to utm by rgdal</strong><br>library(rgdal)<br>seoul311<-spTransform(seoul311, CRS("+proj=utm +north +zone=52 +datum=WGS84"))</p><p> </p><p><strong>#plot Omnidirectional Variogram</strong><br>seoul311.var<-variogram(log(PM10)~1,data=seoul311,cutoff=68000, width=6600)<br>seoul311.var #To check the np in each bin<br>plot(seoul311.var, col="black", pch=16,cex=1.3,<br> xlab="Distance",ylab="Semivariance",<br> main="Omnidirectional Variogram for seoul 311")</p><p> </p><p><strong>#Model fit</strong><br>model.311<- fit.variogram(seoul311.var,vgm(psill=0.06,model="Gau",range=50000,nugget=0.03),<br>  
; fit.method = 2)<br>plot(seoul311.var,model=model.311, col="black", pch=16,cex=1.3,<br> xlab="Distance",ylab="Semivariance",<br> main="Omnidirectional Variogram for seoul 311")</p><p> </p><p>After this, I wanted to check the anisotropy. so, I plotted directional variogram for every 10 degree with tolerance=5 degree by following code:</p><p><br><strong>#Directional Variogram</strong><br>seoul311.var1<-variogram(log(PM10)~1,data=seoul311,width=6600,cutoff=68000,<br> alpha=seq(0,170,10),tol.hor=5)<br>seoul311.var1<br>plot(seoul311.var1,model=model.311, cex=1.1,pch=16,col=1,<br> main="ANisotropic Variogram for PM10")</p><p> </p><p><strong>Question:</strong> What should I do next to get a final isotropic variogram for Ordinary Kring analysis? How can I model anaisotropy using gstat package in R? </p><p> </p><p>[I am kind of struck here. I have read many documents and example for 2 months but couldn't get a clear procedure to do this! Could anyone please explain in details that what code I should write and what aspect I should keep in mind before starting Ordinary Kriging for this data set? Overall. it will be very helpful for me if I got step by step procedure for doing variogram analysis before starting kriging.]<br><br>Orpheus </p></div><br><br/><br/><table border=0 cellpadding=0 cellspacing=0 ><tr><td style='vertical-align: top;font-size:9pt;'><div jquery1411706373835="566"><br></div></td></tr></table><br>
<div id='TMSMDN' style="background:url('http://mail.gist.ac.kr:80/mail/receiveMDN.do?mdnData=oGhEpHGdw7UD%2BvJWe%2BEHziDbAJPdfem5m%2Be97tQYcjDxbuAYVIu4TyOKcbC27uXPQUDxnK1cn1kY%0AE0PMOluD560Dk2%2Fx%2FuBgYMwiEySzt0YQ0kY%2Bm%2FuCjwTER%2Bre2iheuIyRDKT22yQ2F3%2FZKs31jg%3D%3D%0A')"></div>