<html>
<head>
<style><!--
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
font-size: 12pt;
font-family:Calibri
}
--></style></head>
<body class='hmmessage'><div dir='ltr'><div><div dir="ltr">Dear comRades:<div><br></div><div>Because of my data, I have just realized that I have to work with Poisson, because I have 'count data' with geographic reference. Then, my my 'geodata' is such as:</div><div><br></div><div><div> xUTMkm yUTMkm 'Count'</div><div>1385 450.1202 1011.425 0</div><div>1386 450.4273 1007.219 0</div><div>1387 450.2584 1011.884 0</div><div>1388 450.1696 1010.261 0</div><div>1389 450.1718 1009.887 0</div><div>1390 450.6981 1004.379 0</div></div><div>...</div><div><br></div><div><span style="font-size:12pt;">I read the geoRglm structure. What does it mean that I have to make a empiric variogram?.</span></div><div><span style="font-size:12pt;"><br></span></div><div><span style="font-size:12pt;">When I worked with Binomial model </span>(True, False<span style="font-size: 12pt;">), my script was as following:</span></div><div><span style="font-size:12pt;">a2008.posCEROS.spmod<-list(cov.pars=c(1,20),beta=1.0,cov.model="matern",nugget=0,kappa=0.35,family="</span>binomial<span style="font-size:12pt;">",link="logit")</span></div><div><span style="font-size:12pt;"><br></span></div><div><span style="font-size:12pt;">Then, I suppose that my Poisson model would be as following:</span></div><div><span style="font-size:12pt;">a2008.posCEROS.spmod<-list(cov.pars=c(1,20),beta=1.0,cov.model="matern",nugget=0,kappa=0.35,family="</span>poisson<span style="font-size:12pt;">",link="logit")</span></div><div><br></div><div><span style="font-size: 12pt;">Do I have to calculate </span><span style="font-size: 12pt;">nugget and kappa by some method (like likelihood) from my 'count data' or it is merely a theoretical model?. Is my </span><span style="font-size: 12pt;">Poisson model</span><span style="font-size: 12pt;"> right?.</span></div><div><br></div><div>After that, I will generate MCMC simulations, such as:</div><div><br></div><div><div>a2008.posCEROS.mcmc<-mcmc.control(S.scale=0.582, thin=10) #mcmc marc of change monte carlo, S.scale</div><div>a2008.posCEROS.tune<-glsm.mcmc(a2008.posCEROSbin, model=a2008.posCEROS.spmod, mcmc.input=a2008.posCEROS.mcmc)</div></div><div><br></div><div>My goal is to predict how many 'Count' do I have in the survey.</div><div><br></div><div>Thanks in advance for youR help.</div></div></div><style><!--
.ExternalClass .ecxhmmessage P {
padding:0px;
}
.ExternalClass body.ecxhmmessage {
font-size:12pt;
font-family:Calibri;
}
--></style> </div></body>
</html>