<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta name=Generator content="Microsoft Word 12 (filtered medium)">
<style>
<!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:Consolas;
        panose-1:2 11 6 9 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
        {mso-style-priority:99;
        mso-style-link:"Testo normale Carattere";
        margin:0cm;
        margin-bottom:.0001pt;
        font-size:10.5pt;
        font-family:Consolas;}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Testo fumetto Carattere";
        margin:0cm;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
        {mso-style-priority:34;
        margin-top:0cm;
        margin-right:0cm;
        margin-bottom:0cm;
        margin-left:36.0pt;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
span.TestonormaleCarattere
        {mso-style-name:"Testo normale Carattere";
        mso-style-priority:99;
        mso-style-link:"Testo normale";
        font-family:Consolas;}
span.TestofumettoCarattere
        {mso-style-name:"Testo fumetto Carattere";
        mso-style-priority:99;
        mso-style-link:"Testo fumetto";
        font-family:"Tahoma","sans-serif";}
span.StileMessaggioDiPostaElettronica22
        {mso-style-type:personal;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
span.StileMessaggioDiPostaElettronica23
        {mso-style-type:personal;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
span.StileMessaggioDiPostaElettronica24
        {mso-style-type:personal;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
span.StileMessaggioDiPostaElettronica25
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page Section1
        {size:612.0pt 792.0pt;
        margin:70.85pt 2.0cm 2.0cm 2.0cm;}
div.Section1
        {page:Section1;}
/* List Definitions */
@list l0
        {mso-list-id:1250039273;
        mso-list-type:hybrid;
        mso-list-template-ids:1338274880 68157455 68157465 68157467 68157455 68157465 68157467 68157455 68157465 68157467;}
@list l0:level1
        {mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level2
        {mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level3
        {mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level4
        {mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level5
        {mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level6
        {mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level7
        {mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level8
        {mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l0:level9
        {mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1
        {mso-list-id:1546868465;
        mso-list-type:hybrid;
        mso-list-template-ids:-805152546 68157455 68157465 68157467 68157455 68157465 68157467 68157455 68157465 68157467;}
@list l1:level1
        {mso-level-tab-stop:none;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level2
        {mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level3
        {mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level4
        {mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level5
        {mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level6
        {mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level7
        {mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level8
        {mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
@list l1:level9
        {mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;}
ol
        {margin-bottom:0cm;}
ul
        {margin-bottom:0cm;}
-->
</style>
<!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang=IT link=blue vlink=purple>
<div class=Section1>
<p class=MsoNormal><o:p> </o:p></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'>Hi All,<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>I am<span style='color:#1F497D'> a PhD
student in forestry science and I am working with LiDAR data set (huge data
set)</span>. <span style='color:#1F497D'>I am</span> a brand-new in R and
geostatistic (SORRY<span style='color:#1F497D'>, my background it’s in forestry</span>)
but I wish improve my skill for improve myself. <span style='color:#1F497D'> I
wish to develop a methodology to processing a large data-set of points (typical
in LiDAR) but there is a problem with memory. I had created a subsample
data-base but the semivariogram is periodic shape and I am not to able to try a
fit the model. This is a maximum of two weeks of work (day bay day) SORRY. Is
there a geostatistical user I am very happy to listen his suggests. Data format
is X, Y and Z (height to create the DEM) in txt format<o:p></o:p></span></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'>I have this
questions:<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'><o:p> </o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l1 level1 lfo2'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>1.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>After the random selection
(10000 points) and fit.semivariogram model is it possible to use all LiDAR
points? Because the new LiDAR power is to use huge number of points (X;Y; Z
value) to create a very high resolution map of DEM and VEGETATION. The problem
is the memory, but we can use a cluster-linux network to improve the capacity
of R<o:p></o:p></span></p>
<p class=MsoNormal style='margin-left:18.0pt'><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l1 level1 lfo2'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US style='color:#1F497D'>Is it
possible to improve the memory capacity?</span><span lang=EN-US><o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'><o:p> </o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l1 level1 lfo2'><![if !supportLists]><span
lang=EN-US style='color:#1F497D'><span style='mso-list:Ignore'>3.<span
style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><span
lang=EN-US style='color:#1F497D'>The data has a trend and the qqplot shows a
Gaussian trend. Is it possible to normalize the data (i.e. with log)?<o:p></o:p></span></p>
<p class=MsoListParagraph style='margin-left:0cm'><span lang=EN-US
style='color:#1F497D'><o:p> </o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l1 level1 lfo2'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>4.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>When I use this R code
“subground.uk = krige(log(Z)~X+Y, subground, new.grid, v.fit, nmax=40)” to
appear an Error massage: Error in eval(expr, envir, enclos) : oggetto
"X" non trovato<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>I send you a report and attach the image to
explain better. <o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>all procedure is write in R-software and to
improve in gstat . The number of points of GROUND data-set (4x2 km) is
5,459,916.00. The random sub- set from original data-set is 10000 (R code is:
> samplerows <-sample(1:nrow(testground),size=10000,replace=FALSE)
> subground <-testground[samplerows,])<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>1.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>Original data-set Histogram:
show two populations;<o:p></o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>original data-set density plot:
show again two populations of data;<o:p></o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US style='color:#1F497D'><span style='mso-list:Ignore'>3.<span
style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><span
lang=EN-US> Original data-set Boxplot: show there aren’t outlayers un the
data-set (the classification with terrascan is good and therefore there isn’t a
problem with original data)<span style='color:#1F497D'><o:p></o:p></span></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>4.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US> ordinary kriging: show a
trend in the space (hypothesis: the points are very close in the space)<o:p></o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>5.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>de-trend dataset with: v
<- variogram (log(Z)~X+Y, subground, cutoff=1800, width=100))<o:p></o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US><span style='mso-list:Ignore'>6.<span style='font:7.0pt "Times New Roman"'>
</span></span></span><![endif]><span lang=EN-US>map of semi-variogram: show an
anisotropy in the space (0° is Nord= 135° major radius 45° minus radius)<o:p></o:p></span></p>
<p class=MsoListParagraph style='text-indent:-18.0pt;mso-list:l0 level1 lfo4'><![if !supportLists]><span
lang=EN-US style='color:#1F497D'><span style='mso-list:Ignore'>7.<span
style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><span
lang=EN-US>semi-variogram with anisotropy (0°, 45°, 90°, 135°)<span
style='color:#1F497D'>, shows a</span> <span style='color:#1F497D'>b</span>est
shape is from 135°<span style='color:#1F497D'><o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:18.0pt'><span lang=EN-US
style='color:#1F497D'>8. </span><span lang=EN-US>semi-variogram fit with
Gaussian Model. R code is<span style='color:#1F497D'> (see the fig)</span>: <span
style='color:#1F497D'><o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:88.8pt;text-indent:17.4pt'><span
lang=EN-US>> v = variogram(Z~X+Y, subground, cutoff=1800, width=200,
alpha=c(135))<o:p></o:p></span></p>
<p class=MsoNormal style='margin-left:70.8pt;text-indent:35.4pt'><span
lang=EN-US>> v.fit = fit.variogram(v, vgm(psill = 1, model="Gau",
range=1800, nugget= 0, anis=c(135, 0.5)))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>R code:<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>testground2 <- read.table(file="c:/work_LIDAR_USA/R_kriging_new_set/ground_26841492694149_xyz.txt",
header=T)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>class (testground2)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>coordinates (testground2)=~X+Y # this makes
testground a SpatialPointsDataFrame<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>class (testground2)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>str(as.data.frame(testground))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>hist(testground$Z,nclass=20) #this makes a
histogram<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>plot(density(testground$Z)) #this makes a
plot density<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>boxplot(testground$Z)#this makes a boxplot<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>samplerows<-sample(1:nrow(testground),size=10000,replace=FALSE)
#select n. points from all data-base<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>subground <-testground[samplerows,]<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>hist(subground$Z,nclass=20) #this makes a
histogram<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>plot(density(subground$Z)) #this makes a
plot density<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>boxplot(subground$Z)#this makes a boxplot<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>spplot(subground["Z"],
col.regions=bpy.colors(), at = seq(850,1170,10))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>library(maptools)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>library(gstat)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>plot(variogram(Z~1, subground)) #Ordinary
Kriging (without detrend)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US># if there is a trend we must use a detrend
fuction Z~X+Y<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>x11(); plot(variogram(log(Z)~X+Y,
subground, cutoff=1800, width=80)) #Universal Kriging (with detrend)<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>x11(); plot(variogram(log(Z)~X+Y,
subground, cutoff=1800, width=80, map=T))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>x11(); plot(variogram(log(Z)~X+Y,
subground, cutoff=1800, width=80, alpha=c(0, 45, 90, 135)))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>v = variogram(log(Z)~X+Y, subground,
cutoff=1800, width=80, alpha=c(135, 45))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>v.fit = fit.variogram(v, vgm(psill = 1,
model="Gau", range=1800, nugget= 0, anis=c(135, 0.5)))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>plot(v, v.fit, plot.nu=F,
pch="+")<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US># create the new grid<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>new.grid <- spsample(subground,
type="regular", cellsize=c(1,1))<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>gridded(new.grid) <- TRUE<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>fullgrid(new.grid) <- TRUE<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>new.grid@grid<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>#using Universal Kriging<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US>subground.uk = krige(log(Z)~X+Y, subground,
new.grid, v.fit, nmax=40) #ERROR<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='color:#1F497D'><o:p> </o:p></span></p>
</div>
</body>
</html>