[R-sig-Geo] spatialreg::predict.sarlm
Weldensie Embaye
wemb@ye @end|ng |rom mum@edu
Fri May 15 16:32:59 CEST 2020
I am trying to run out-of-sample prediction
using spatialreg::predict.sarlm package. I tried to prepare my data set as
per the requirements.However, it did not work.
Below is the code.
csv_train <- read.csv("train.csv") #upload your csv. R needs to know your
region ID
> hhid <- csv_train$hhid #Explicitly created a variable to hold the regions
> nb_train <- read.gwt2nb('train.gwt', region.id=hhid)
> Q_train<-nb2listw(nb_train)
> csv_test <- read.csv("test.csv") #upload your csv. R needs to know your
region ID
> hhid <- csv_test$hhid #Explicitly created a variable to hold the regions
> nb_test <- read.gwt2nb('test.gwt', region.id=hhid)
> Q_test<-nb2listw(nb_test)
> y_test <- dataTable$annualrent[test]
> ######## spatial lag process model
> GM5<-spatialreg::lagsarlm(formula, data=traindata, listw=Q_train)
> summary(GM5)
Call:spatialreg::lagsarlm(formula = formula, data = traindata, listw =
Q_train)
Residuals:
Min 1Q Median 3Q Max
-54.38677 -7.32082 -0.78772 5.69047 90.56889
Type: lag
Coefficients: (asymptotic standard errors)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.63671 4.08382 -5.0533 4.343e-07
coveredpri -4.04663 4.71961 -0.8574 0.391219
coveredsha -3.70054 2.57827 -1.4353 0.151207
vipprivate -3.19640 4.57774 -0.6982 0.485022
vipshare -2.26742 2.30487 -0.9838 0.325238
unoveredla -1.29846 3.62671 -0.3580 0.720322
flushpriva 10.22320 3.31060 3.0880 0.002015
electricit 11.25641 2.07508 5.4246 5.810e-08
privatetap 6.48159 2.63420 2.4606 0.013872
publictap -2.91930 3.46341 -0.8429 0.399285
watertanke -5.52987 7.58483 -0.7291 0.465959
protectewe -5.44122 5.17858 -1.0507 0.293389
river -1.76395 3.57625 -0.4932 0.621843
numberofro 12.47265 0.94757 13.1628 < 2.2e-16
roof -2.83454 3.62586 -0.7818 0.434357
externalwa 10.19840 1.92089 5.3092 1.101e-07
floor 3.81212 2.55901 1.4897 0.136307
Rho: 0.3742, LR test value: 4.3541, p-value: 0.03692
Asymptotic standard error: 0.16111
z-value: 2.3227, p-value: 0.020197
Wald statistic: 5.3948, p-value: 0.020197
Log likelihood: -1842.303 for lag model
ML residual variance (sigma squared): 273.25, (sigma: 16.53)
Number of observations: 436
Number of parameters estimated: 19
AIC: 3722.6, (AIC for lm: 3725)
LM test for residual autocorrelation
test value: 1.3748, p-value: 0.24099
> GM5_predict <- spatialreg::predict.sarlm(GM5, newdata = testdata, listw =
Q_test)
Error in spatialreg::predict.sarlm(GM5, newdata = testdata, listw = Q_test)
:
mismatch between newdata and spatial weights. newdata should have
region.id as row.names
>
Any idea, what is going on?
[[alternative HTML version deleted]]
More information about the R-sig-Geo
mailing list