[R-sig-Geo] R-Tutorial: Geospatial Data Science in R (Resent)
Zia Ahmed
z|@207 @end|ng |rom gm@||@com
Wed Jan 8 18:06:37 CET 2020
Hi All,
I have published an online tutorial related to spatial-data analysis with R
(https://zia207.github.io/geospatial-r-github.io/). Nothing is new here, I
have just organized several R-code and data that I have used in my several
publications. Most of the codes were written with the help of postings in
several online blogs: such as R-sig-Geo
<https://stat.ethz.ch/mailman/listinfo/r-sig-geo>, Stack Overflow
<https://stackoverflow.com/>, and R bloggers
<https://www.r-bloggers.com/update-can-we-predict-flu-outcome-with-machine-learning-in-r/>
and on-line tutorials such as Spatial Data Science
<https://rspatial.org/index.html> and Geostatistics & Open-source
statistical computing
<http://www.css.cornell.edu/faculty/dgr2/teach/degeostats.html>. I think
It would help someone we have no prior knowledge of GIS, remote sensing or
any other area of geoinformatics, but have some experience in R-coding. The
data used in this tutorial also available for download.
I appreciate any feedback for improving this tutorial.
I appreciate any feedback for improving this tutorial.
Best
Zia Ahmed
University at Buffalo
Tutorial consist following topics:
*1. **Spatial Data Processing*
<https://zia207.github.io/geospatial-r-github.io/about.html>
- Reading and Writing Spatial Data
<https://zia207.github.io/geospatial-r-github.io/read-write-spatial-data.html>
- Vector data
- Raster data
- Map Projection and Coordinate Reference Systems
<https://zia207.github.io/geospatial-r-github.io/map-projection-coordinate-reference-systems.html>
- Geographic coordinate system (GCS)
- Projected coordinate system
- Coordinate Reference System in R
- Geoprocessing of Vector data
<https://zia207.github.io/geospatial-r-github.io/geoprocessing-vector-data.html>
- Clipping
- Union
- Dissolve
- Intersect
- Erase
- Convex Hull
- Buffer
- Working with Spatial Point Data
<https://zia207.github.io/geospatial-r-github.io/working-with-spatial-point-data.html>
- Create a Spatial Point Data Frame
- Extract Environmental Covariates to SPDF
- Create a Prediction Grid
- Exploratory Data Analysis
- Plot Data on Web Map
- Working with Spatial Polygon Data
<https://zia207.github.io/geospatial-r-github.io/working-with-spatial-polygon.html>
- Data Processing
- Visualization
- Animation of Time Series Data
- Working with Raster Data
<https://zia207.github.io/geospatial-r-github.io/working-with-raster-data.html>
- Basic Raster Operation
- Clipping
- Reclassification
- Focal Statistics
- Raster Algebra
- Aggregation
- Resample
- Mosaic
- Convert Raster to Point Data
- Convert Point Data to Raster
- Raster Stack and Raster Brick
- Digital Terrain Modeling
- Slope
- Aspect
- Hillshade
- Terrain Ruggedness Index
- Topographic Position Index
- Roughness
- Curvature
- Flow Direction
- netCDF Data Processing
<https://zia207.github.io/geospatial-r-github.io/netCDF-data-processing.html>
*2. **Spatial Statistics*
<https://zia207.github.io/geospatial-r-github.io/spatial-statistics.html>
- Spatial Autocorrelation
<https://zia207.github.io/geospatial-r-github.io/spatial-autocorrelation.html>
- Moran’s I
- Geary’s C
- Getis’s Gi
- Point Pattern Analysis
<https://zia207.github.io/geospatial-r-github.io/point-pattern-analysis.html>
- Geographically Weighted Mmodels
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-models.html>
- Geographically Weighted Summary Statistics
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-summary-statistics.html>
- Geographically Weighted Principal Components Analysis
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-principal-components-analysis.html>
- Geographically Weighted Regression
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-regression.html>
- Geographically Weighted OLS Regression
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-ols-regression.html>
- Geographically Weighted Poisson Regression
<https://zia207.github.io/geospatial-r-github.io/geographically-weighted-poisson-regression.html>
- Global and local (Geographically Weighted) Random Forest
<https://zia207.github.io/geospatial-r-github.io/geographically-wighted-random-forest.html>
*3. **Spatial Interpolation*
<https://zia207.github.io/geospatial-r-github.io/spatial-interpolation.html>
· Spatial Interpolation
<https://zia207.github.io/geospatial-r-github.io/spatial-interpolation.html>
o Deterministic Methods for Spatial Interpolation
<https://zia207.github.io/geospatial-r-github.io/deterministic-methods-for-spatial-interpolation.html>
§ Polynomial Trend Surface
§ Proximity Analysis-Thiessen Polygons
§ Nearest Neighbor Interpolation
§ Inverse Distance Weighted
§ Thin Plate Spline
o Geostatistical Methods for Spatial Interpolation
<https://zia207.github.io/geospatial-r-github.io/geostatistical-methods-for-spatial-interpolation.html>
§ Semivariogram Modeling
<https://zia207.github.io/geospatial-r-github.io/semivariogram-modeling.html>
§ Kriging <https://zia207.github.io/geospatial-r-github.io/kriging.html>
§ Ordinary Kriging
<https://zia207.github.io/geospatial-r-github.io/ordinary-kriging.html>
§ Universal Kriging
<https://zia207.github.io/geospatial-r-github.io/universal-kriging.html>
§ Co-Kriging
<https://zia207.github.io/geospatial-r-github.io/cokriging.html>
§ Regression kriging
<https://zia207.github.io/geospatial-r-github.io/regression-kriging.html>
§ Generalized Linear Model
§ Random Forest
§ Meta Ensemble Machine Learning
§ Indicator kriging
<https://zia207.github.io/geospatial-r-github.io/indicator-kriging.html>
· Assessing the Quality of Spatial Predictions
<https://zia207.github.io/geospatial-r-github.io/assessing-quality-spatial-predictions.html>
o Cross-validation
<https://zia207.github.io/geospatial-r-github.io/cross-validation.html>
o Validation with an Independent Dataset
<https://zia207.github.io/geospatial-r-github.io/validation-independent-dataset.html>
o Conditional Simulation for Spatial Uncertainty
<https://zia207.github.io/geospatial-r-github.io/conditional-simulation-spatial-uncertainty.html>
*4. **Remote Sensing Data Processing and Analysis*
<https://zia207.github.io/geospatial-r-github.io/about-c.html>
·
Remote Sensing Basic
<https://zia207.github.io/geospatial-r-github.io/reomte-sensing-basic.html>
· Landsat 8 Image Processing & Visualization
<https://zia207.github.io/geospatial-r-github.io/landsat-8-image-processing.html>
o RGB image comparison
o Pan Sharpening or Image Fusion
o Radiometric Calibration and Atmospheric Correction
· Spectral Indices
<https://zia207.github.io/geospatial-r-github.io/spectral-indices.html>
o Normalized Difference Vegetation Index
o Soil Adjusted Vegetation Index (SAVI)
o Modified soil Adjusted Vegetation Index (MSAVI)
o Enhanced Vegetation Index (EVI)
o Two-bands Enhanced Vegetation (EVI2)
o Normalized Difference Water Index (NDWI)
· Green Ground Cover from UAV Images
<https://zia207.github.io/geospatial-r-github.io/uav-ground-cover.html>
· Texture Analysis
<https://zia207.github.io/geospatial-r-github.io/texture-analysis.html>
· Image Classification
<https://zia207.github.io/geospatial-r-github.io/image-classification.html>
o Ground Truth Data Processing
<https://zia207.github.io/geospatial-r-github.io/ground-truth-data-processing.html>
o Unsupervised Classification
<https://zia207.github.io/geospatial-r-github.io/unsupervised-classification.html>
o Supervised Classification
<https://zia207.github.io/geospatial-r-github.io/supervised-classification.html>
§ Random Forest
<https://zia207.github.io/geospatial-r-github.io/random-forest.html>
§ Support Vector Machine
<https://zia207.github.io/geospatial-r-github.io/support-vector-machine.html>
§ Naïve Bayes
<https://zia207.github.io/geospatial-r-github.io/naive-bayes.html>
§ eXBoost <https://zia207.github.io/geospatial-r-github.io/exboost.html>
§ Deep Learning-H2O
<https://zia207.github.io/geospatial-r-github.io/deep-learning-h2o.html>
§ Stack-Ensemble-H20
<https://zia207.github.io/geospatial-r-github.io/stack-ensemble-h2o.html>
§ Deep Learning Keras-TensorFlow
<https://zia207.github.io/geospatial-r-github.io/deep-learning-keras-tensorflow.html>
[[alternative HTML version deleted]]
More information about the R-sig-Geo
mailing list