[R-sig-Geo] slow computation progress for calc function
Bede-Fazekas Ákos
b|@|ev||@t @end|ng |rom gm@||@com
Tue Jun 25 10:03:44 CEST 2019
Dear Sara,
Hm.. so sorry, I have no more idea...
Ákos
2019.06.25. 9:55 keltezéssel, Sara Shaeri írta:
> Dear Ákos,
> I tried it on a small partition of my data. However, the processing
> time is the same :(. Any other suggestion?
>
> -------------------------
> *Sara Shaeri Karimi*
> PhD Candidate, Department of Environmental Sciences
> Faculty of Science and Engineering
> Macquarie University, NSW 2109 Australia
> /Researchgate <https://www.researchgate.net/profile/Sara_Shaeri>
> /
> /Linkedin <https://www.linkedin.com/in/sara-shaeri-karimi-94351433>/
>
>
>
>
>
>
>
>
> On Tuesday, June 25, 2019, 4:33:34 PM GMT+10, Bede-Fazekas Ákos
> <bfalevlist using gmail.com> wrote:
>
>
> Dear Sara,
>
> it is faster if you first convert the integer vector to logical, and
> then run rle().
>
> set.seed(12345)
> random_sample <- sample.int(n = 10, size = 1e5, replace = TRUE) - 1
>
> original <- function(x){
> y <- rle(x)
> return(max(y$lengths[y$values == 0]))
> }
>
> faster <- function(x){
> y <- rle(x == 0)
> return(max(y$lengths[y$values]))
> }
>
> original(random_sample) == faster(random_sample)
>
> library(microbenchmark)
> microbenchmark(
> original(random_sample),
> faster(random_sample)
> )
>
> Hence, this may be faster:
> interflood <- clusterR(all_predictions, calc, args=list(function(x){y <-
> rle(as.numeric(x) == 0; return(max(y$lengths[y$values]))}))
>
> HTH,
> Ákos Bede-Fazekas
> Hungarian Academy of Sciences
>
> 2019.06.25. 3:32 keltezéssel, Sara Shaeri via R-sig-Geo írta:
> > Dear community,
> > I’m trying to use the Calc function in a raster stack (8000 binary
> format rasters). Each raster covers 2,421,090 cells, as such, I’m
> using parallel coding to make the most of the available cores for this
> computation, however, this process is extremely slow on a 36 core and
> 76 Gb RAM. How could I speed up the calculations? This is the code I’m
> using:
> >
> > beginCluster(30)
> >
> > interflood <- clusterR(all_predictions, calc,
> args=list(function(x){y <- rle(as.numeric(x));return(max(
> y$lengths[y$values == 0]))}))
> >
> > endCluster()
> >
> >
> > RegardsSara
> >
> >
> > -------------------------
> > Sara Shaeri KarimiPhD Candidate, Department of Environmental
> SciencesFaculty of Science and EngineeringMacquarie University, NSW
> 2109 Australia
> > Researchgate
> > Linkedin
>
> >
> >
> >
> >
> >
> >
> > [[alternative HTML version deleted]]
> >
> > _______________________________________________
> > R-sig-Geo mailing list
> > R-sig-Geo using r-project.org <mailto:R-sig-Geo using r-project.org>
> > https://stat.ethz.ch/mailman/listinfo/r-sig-geo
> >
>
> _______________________________________________
> R-sig-Geo mailing list
> R-sig-Geo using r-project.org <mailto:R-sig-Geo using r-project.org>
> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>
[[alternative HTML version deleted]]
More information about the R-sig-Geo
mailing list