[R-sig-Geo] using spatialpolygonsdataframe in ppm (or, converting spatialpolygonsdataframe to pixel image or other object useful in ppm)
Christopher W. Ryan
cryan at binghamton.edu
Fri Sep 1 20:04:16 CEST 2017
Hello.
What is the best way to use a spatialpolygonsdataframe, with a numerical
variable of interest for each polygon (proportion of households in
poverty for US census tracts in the region of interest) as a predictor
in ppm() in spatstat? I don't think I can use it directly on the RHS of
ppm(), because spatialpolygonsdataframe is not listed in the help file
for ppm() as an acceptable predictor. So is there a way to convert the
census tract spatialpolygonsdataframe to an acceptable input object for
ppm(), such as a pixel image with each pixel having the numerical value
of poverty in its census tract polygon?
Or is there a better way to proceed?
Thank you. Below is my sessionInfo
--Chris Ryan
Broome County Health Department, Binghamton, NY
=================================
R version 3.3.3 (2017-03-06)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] tmap_1.10 rgdal_1.2-6 RColorBrewer_1.1-2
maptools_0.9-2
[5] sp_1.2-4 spatstat_1.50-0 rpart_4.1-10
nlme_3.1-131
[9] shapefiles_0.7 foreign_0.8-67 stringr_1.2.0
dplyr_0.5.0
loaded via a namespace (and not attached):
[1] viridisLite_0.2.0 jsonlite_1.4 splines_3.3.3
[4] geojsonlint_0.2.0 foreach_1.4.3 R.utils_2.5.0
[7] gtools_3.5.0 shiny_1.0.5 assertthat_0.2.0
[10] expm_0.999-2 stats4_3.3.3 LearnBayes_2.15
[13] lattice_0.20-35 digest_0.6.12 polyclip_1.6-1
[16] colorspace_1.3-2 plyr_1.8.4 htmltools_0.3.5
[19] httpuv_1.3.5 Matrix_1.2-8 R.oo_1.21.0
[22] XML_3.98-1.9 rmapshaper_0.3.0 raster_2.5-8
[25] gmodels_2.16.2 xtable_1.8-2 webshot_0.4.1
[28] scales_0.4.1 gdata_2.17.0 tensor_1.5
[31] satellite_1.0.0 spatstat.utils_1.4-1 tibble_1.3.0
[34] mgcv_1.8-17 gdalUtils_2.0.1.7 mapview_2.1.4
[37] magrittr_1.5 mime_0.5 deldir_0.1-12
[40] R.methodsS3_1.7.1 MASS_7.3-45 class_7.3-14
[43] tools_3.3.3 geosphere_1.5-5 V8_1.5
[46] munsell_0.4.3 compiler_3.3.3 e1071_1.6-8
[49] units_0.4-5 classInt_0.1-24 grid_3.3.3
[52] tmaptools_1.2-1 RCurl_1.95-4.8 dichromat_2.0-0
[55] iterators_1.0.8 htmlwidgets_0.8 goftest_1.1-1
[58] crosstalk_1.0.0 bitops_1.0-6 base64enc_0.1-3
[61] boot_1.3-18 codetools_0.2-15 abind_1.4-5
[64] DBI_0.6-1 jsonvalidate_1.0.0 curl_2.5
[67] R6_2.2.0 udunits2_0.13 rgeos_0.3-23
[70] spdep_0.6-12 KernSmooth_2.23-15 stringi_1.1.5
[73] osmar_1.1-7 Rcpp_0.12.10 sf_0.5-3
[76] png_0.1-7 leaflet_1.1.0 coda_0.19-1
>
---
This email has been checked for viruses by AVG.
http://www.avg.com
More information about the R-sig-Geo
mailing list