[R-sig-Geo] Differences between moran.test and lm.morantest

Javier García javier.garcia at ehu.eus
Mon Jul 31 22:37:11 CEST 2017


Thanks a lot for such a detailed response, Roger.

Best
Javi

-----Mensaje original-----
De: Roger Bivand [mailto:Roger.Bivand at nhh.no] 
Enviado el: domingo, 30 de julio de 2017 18:42
Para: Javier García
CC: r-sig-geo at r-project.org
Asunto: Re: [R-sig-Geo] Differences between moran.test and lm.morantest

On Sat, 29 Jul 2017, Javier García wrote:

> Hello everybody:
>
>
>
> Currently I am working on a paper in which we need to analyze the 
> presence of possible spatial correlation in the data. With this aim I 
> am running some tests in R. I am a little bit confused about the 
> differences between moran.test and lm.morantest R functions. The 
> problem I face to is that when I run moran.test on my  regression 
> residuals the result is totally different from the one I obtain when I 
> use lm.morantest with the lm regression object (please, see below the 
> different outputs I get and after it a reproducible example). In 
> particular, whereas the observed Moran I is the same, the expectation and
variance differ dramatically, getting opposite conclusions.
> I would appreciate very much if someone could clarify for me which is 
> the cause behind this. By the way, I also run LM tests (LMerr, RLMerr, 
> LMlag and
> RLMlag) not rejecting the null hypothesis in any of them (all p-values 
> are higher than 0.7), which is in clear contradiction with the 
> lm.morantest? how is this possible?
>

moran.test() is for "primary" variables only - read the reference in
?moran.test. The mean model applied to the this variable is the intercept,
that is the mean only:

> moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="W"),
+ randomisation=FALSE, alternative="two.sided")

 	Moran I test under normality

data:  COL.OLD$CRIME
weights: nb2listw(COL.nb, style = "W")

Moran I statistic standard deviate = 5.6754, p-value = 1.384e-08
alternative hypothesis: two.sided
sample estimates:
Moran I statistic       Expectation          Variance
       0.510951264      -0.020833333       0.008779831

under the Normal assumption.

lm.morantest() can reproduce the same results for the same model:

> lm.morantest(lm(CRIME ~ 1, data=COL.OLD), nb2listw(COL.nb, style="W"), 
+ alternative="two.sided")

 	Global Moran I for regression residuals

data:
model: lm(formula = CRIME ~ 1, data = COL.OLD)
weights: nb2listw(COL.nb, style = "W")

Moran I statistic standard deviate = 5.6754, p-value = 1.384e-08
alternative hypothesis: two.sided
sample estimates:
Observed Moran I      Expectation         Variance
      0.510951264     -0.020833333      0.008779831

Note that the Normal VI for moran.test() is:

         VI <- (wc$nn * wc$S1 - wc$n * wc$S2 + 3 * S02)/(S02 *
             (wc$nn - 1))

and for lm.morantest():

     XtXinv <- chol2inv(model$qr$qr[p1, p1, drop = FALSE])
     X <- model.matrix(terms(model), model.frame(model))
...
     Z <- lag.listw(listw.U, X, zero.policy = zero.policy)
     C1 <- t(X) %*% Z
     trA <- (sum(diag(XtXinv %*% C1)))
     EI <- -((N * trA)/((N - p) * S0))
     C2 <- t(Z) %*% Z
     C3 <- XtXinv %*% C1
     trA2 <- sum(diag(C3 %*% C3))
     trB <- sum(diag(4 * (XtXinv %*% C2)))
     VI <- (((N * N)/((S0 * S0) * (N - p) * (N - p + 2))) * (S1 +
         2 * trA2 - trB - ((2 * (trA^2))/(N - p))))

where you see easily that the issue of dependent residuals (only n-p are 
independent even in the aspatial case, so you see n-p instead of n) is 
handled, as are products of X, WX, and (X'X)^{-1}.

Reading the references is essential and should not be neglected. Reading 
the code may help, but doesn't explain the reasoning behind the code and 
the output. If you need to test model residuals, use the appropriate test. 
Using moran.test() on extracted residuals if covariates are included in 
the model is never justified.

Different outcomes from Moran's I and LM suggest severe mis-specification 
in your model, see for example:

https://groups.google.com/forum/#!msg/openspace-list/k4F4jI9cU1I/s5bj8r4nwn4
J

for a simplified flowchart for choosing models.

Hope this clarifies,

Roger

>
>
>
>
> MY PARTICULAR CASE
>
>
>
> reg.OLS <- lm(y~z1+z2+z3+z4+z5+z6+z7+z8+z9+z10, data=datos)
>
>
>
> moran.test(resid(reg.OLS),alternative="two.sided", W_n)
>
>
>
>        Moran I test under randomisation
>
>
>
> data:  resid(reg.OLS)
>
> weights: W_n
>
>
>
> Moran I statistic standard deviate = 0.4434, p-value = 0.6575
>
> alternative hypothesis: two.sided
>
> sample estimates:
>
> Moran I statistic       Expectation          Variance
>
>     1.596378e-05     -3.595829e-04      7.173448e-07
>
>
>
>
>
>
>
> moran.lm <-lm.morantest(reg.OLS, W_n, alternative="two.sided")
>
> print(moran.lm)
>
>
>
>        Global Moran I for regression residuals
>
>
>
> data:
>
> model: lm(formula = y ~ z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10
>
> , data = datos)
>
> weights: W_n
>
>
>
> Moran I statistic standard deviate = 11.649, p-value < 2.2e-16
>
> alternative hypothesis: two.sided
>
> sample estimates:
>
> Observed Moran I      Expectation         Variance
>
>    1.596378e-05    -1.913005e-03     2.741816e-08
>
>
>
>
>
> A REPRODUCIBLE EXAMPLE
>
>
>
>
>
> library(spdep)
>
> data(oldcol)
>
> oldcrime.lm <- lm(CRIME ~ HOVAL + INC + OPEN + PLUMB + DISCBD + PERIM,
data
> = COL.OLD)
>
>
>
> moran.test(resid(oldcrime.lm), nb2listw(COL.nb, style="W"))
>
>
>
>        Moran I test under randomisation
>
>
>
> data:  resid(oldcrime.lm)
>
> weights: nb2listw(COL.nb, style = "W")
>
>
>
> Moran I statistic standard deviate = 1.2733, p-value = 0.1015
>
> alternative hypothesis: greater
>
> sample estimates:
>
> Moran I statistic       Expectation          Variance
>
>      0.096711162      -0.020833333       0.008521765
>
>
>
>
>
> lm.morantest(oldcrime.lm, nb2listw(COL.nb, style="W"))
>
>
>
>        Global Moran I for regression residuals
>
>
>
> data:
>
> model: lm(formula = CRIME ~ HOVAL + INC + OPEN + PLUMB + DISCBD +
>
> PERIM, data = COL.OLD)
>
> weights: nb2listw(COL.nb, style = "W")
>
>
>
> Moran I statistic standard deviate = 1.6668, p-value = 0.04777
>
> alternative hypothesis: greater
>
> sample estimates:
>
> Observed Moran I      Expectation         Variance
>
>     0.096711162     -0.052848581      0.008050938
>
>
>
> Thanks a lot in advance and sorry for the inconvenience.
>
>
>
> Javi
>
>
>
>
>
>
>
>
> JAVIER GARCÍA
>
>
>
> Departamento de Economía Aplicada III (Econometría y Estadística)
>
> Facultad de Economía y Empresa (Sección Sarriko)
> Avda. Lehendakari Aguirre 83
>
> 48015 BILBAO
> T.: +34 601 7126 F.: +34 601 3754
> <http://www.ehu.es/> www.ehu.es
>
>
http://www.unibertsitate-hedakuntza.ehu.es/p268-content/es/contenidos/inform
>
acion/manual_id_corp/es_manual/images/firma_email_upv_euskampus_bilingue.gif
>
>
>
>
>
>

-- 
Roger Bivand
Department of Economics, Norwegian School of Economics,
Helleveien 30, N-5045 Bergen, Norway.
voice: +47 55 95 93 55; e-mail: Roger.Bivand at nhh.no
Editor-in-Chief of The R Journal, https://journal.r-project.org/index.html
http://orcid.org/0000-0003-2392-6140
https://scholar.google.no/citations?user=AWeghB0AAAAJ&hl=en



More information about the R-sig-Geo mailing list