[R-sig-Geo] Differences between moran.test and lm.morantest
Javier García
javier.garcia at ehu.eus
Sat Jul 29 03:51:23 CEST 2017
Hello everybody:
Currently I am working on a paper in which we need to analyze the presence
of possible spatial correlation in the data. With this aim I am running some
tests in R. I am a little bit confused about the differences between
moran.test and lm.morantest R functions. The problem I face to is that when
I run moran.test on my regression residuals the result is totally different
from the one I obtain when I use lm.morantest with the lm regression object
(please, see below the different outputs I get and after it a reproducible
example). In particular, whereas the observed Moran I is the same, the
expectation and variance differ dramatically, getting opposite conclusions.
I would appreciate very much if someone could clarify for me which is the
cause behind this. By the way, I also run LM tests (LMerr, RLMerr, LMlag and
RLMlag) not rejecting the null hypothesis in any of them (all p-values are
higher than 0.7), which is in clear contradiction with the lm.morantest
how
is this possible?
MY PARTICULAR CASE
reg.OLS <- lm(y~z1+z2+z3+z4+z5+z6+z7+z8+z9+z10, data=datos)
moran.test(resid(reg.OLS),alternative="two.sided", W_n)
Moran I test under randomisation
data: resid(reg.OLS)
weights: W_n
Moran I statistic standard deviate = 0.4434, p-value = 0.6575
alternative hypothesis: two.sided
sample estimates:
Moran I statistic Expectation Variance
1.596378e-05 -3.595829e-04 7.173448e-07
moran.lm <-lm.morantest(reg.OLS, W_n, alternative="two.sided")
print(moran.lm)
Global Moran I for regression residuals
data:
model: lm(formula = y ~ z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10
, data = datos)
weights: W_n
Moran I statistic standard deviate = 11.649, p-value < 2.2e-16
alternative hypothesis: two.sided
sample estimates:
Observed Moran I Expectation Variance
1.596378e-05 -1.913005e-03 2.741816e-08
A REPRODUCIBLE EXAMPLE
library(spdep)
data(oldcol)
oldcrime.lm <- lm(CRIME ~ HOVAL + INC + OPEN + PLUMB + DISCBD + PERIM, data
= COL.OLD)
moran.test(resid(oldcrime.lm), nb2listw(COL.nb, style="W"))
Moran I test under randomisation
data: resid(oldcrime.lm)
weights: nb2listw(COL.nb, style = "W")
Moran I statistic standard deviate = 1.2733, p-value = 0.1015
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.096711162 -0.020833333 0.008521765
lm.morantest(oldcrime.lm, nb2listw(COL.nb, style="W"))
Global Moran I for regression residuals
data:
model: lm(formula = CRIME ~ HOVAL + INC + OPEN + PLUMB + DISCBD +
PERIM, data = COL.OLD)
weights: nb2listw(COL.nb, style = "W")
Moran I statistic standard deviate = 1.6668, p-value = 0.04777
alternative hypothesis: greater
sample estimates:
Observed Moran I Expectation Variance
0.096711162 -0.052848581 0.008050938
Thanks a lot in advance and sorry for the inconvenience.
Javi
JAVIER GARCÍA
Departamento de Economía Aplicada III (Econometría y Estadística)
Facultad de Economía y Empresa (Sección Sarriko)
Avda. Lehendakari Aguirre 83
48015 BILBAO
T.: +34 601 7126 F.: +34 601 3754
<http://www.ehu.es/> www.ehu.es
http://www.unibertsitate-hedakuntza.ehu.es/p268-content/es/contenidos/inform
acion/manual_id_corp/es_manual/images/firma_email_upv_euskampus_bilingue.gif
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://stat.ethz.ch/pipermail/r-sig-geo/attachments/20170729/3f3c891e/attachment.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: image001.gif
Type: image/gif
Size: 6359 bytes
Desc: not available
URL: <https://stat.ethz.ch/pipermail/r-sig-geo/attachments/20170729/3f3c891e/attachment.gif>
More information about the R-sig-Geo
mailing list