[R-sig-Geo] different Moran's I results using R and matlab
Roger Bivand
Roger.Bivand at nhh.no
Fri Mar 4 13:46:26 CET 2016
On Thu, 3 Mar 2016, Roger Bivand wrote:
> On Thu, 3 Mar 2016, Qiuhua Ma wrote:
>
>> Hi,
>>
>> I run the exactly same regression using R and matlab and get the same
>> regression results.
>
> Well, you need to give the exact reference to the matlab code you have used -
> are they the functions in Spatial Econometrics Toolbox under spatial/stats? I
> do not see the robust variants there.
>
> Most likely the data or the weights are different. Make your data set
> available on a link, and I'll take a look.
Having not heard back, I ran moran() and lmerror() in Matlab using the
Spatial Econometrics Toolbox on the data presented in stats/moran_d.m:
load anselin.dat;
y = anselin(:,1);
n = length(y);
x = [ones(n,1) anselin(:,2:3)];
xc = anselin(:,4);
yc = anselin(:,5);
[j W j] = xy2cont(xc,yc);
result = moran(y,x,W);
> tests$result
, , 1
[,1]
meth "moran"
nobs 49
nvar 3
morani 0.2861962
istat 4.019423
imean -0.03180435
ivar 0.006259337
prob 5.834084e-05
(R result after moving the input data from Matlab to R with
R.matlab::readMat())
> lm.morantest(lm_obj, lw, alternative="two.sided")
Global Moran I for regression residuals
data:
model: lm(formula = y ~ x - 1)
weights: lw
Moran I statistic standard deviate = 4.0194, p-value = 5.834e-05
alternative hypothesis: two.sided
sample estimates:
Observed Moran I Expectation Variance
0.286196209 -0.031804345 0.006259337
[SAME RESULT]
and similarly with lmerror()
> tests$result2
, , 1
[,1]
meth "lmerror"
lm 10.7656
prob 0.001034042
chi1 17.611
nobs 49
nvar 3
> lm.LMtests(lm_obj, lw)
Lagrange multiplier diagnostics for spatial dependence
data:
model: lm(formula = y ~ x - 1)
weights: lw
LMErr = 10.766, df = 1, p-value = 0.001034
[SAME RESULT]
The result for lmlag() differs, probably because the Matlab code uses two
different values for sigma and epe:
sigma = (e'*e)/(n-k);
epe = (e'*e)/n;
lm1 = (e'*W*y)/epe;
t1 = trace((W+W')*W);
D1=W*x*b;
M=eye(n)-x*inv((x'*x))*x';
D=(D1'*M*D1)*(1/sigma)+t1;
lmlag = (lm1*lm1)*(1/D);
so does not match the R code which follows Eq. 13 in Anselin et al. (1996,
p. 84) in dividing the sum of squared errors by n, not n-k.
I have not found lmlag_robust() or lmerror_robust() anywhere.
Please provide the code of these functions if you need further
clarification - the R code for the Moran's I test on OLS residuals is OK,
as is the LM error test. The LM lag test chooses a version using ML sigma
in harmony with the source article.
Roger
>
> Roger
>
>>
>> However I got different results for Moran't I test and LM test results.
>>
>> *R command:*
>> nb4 <- knn2nb(knearneigh(sale.sp, k = 4))
>> knn4listw <- nb2listw(nb4, style="W")
>>
>> lm.morantest(near7_comrisk_semilog.out, knn4listw)
>> lm.LMtests(near7_comrisk_semilog.out, knn4listw, test=c("LMerr", "LMlag",
>> "RLMerr", "RLMlag"))
>>
>> *R results:*
>> Moran I statistic standard deviate = 1.4135, p-value = 0.07875
>> Observed Moran's I Expectation Variance
>> 8.780168e-03 -2.762542e-04 4.104967e-05
>>
>> LMerr = 1.8752, df = 1, p-value = 0.1709
>> LMlag = 0.14335, df = 1, p-value = 0.705
>> RLMerr = 2.1193, df = 1, p-value = 0.1455
>> RLMlag = 0.38741, df = 1, p-value = 0.5337
>>
>> *Matlab command:*
>> W_sale_4 = make_nnw(xc,yc,4);
>>
>> moran4= moran(y,x, W_sale_4)
>> error_4 = lmerror(y,x,W_sale_4)
>> lag_4 = lmlag(y,x,W_sale_4)
>> error_4r = lmerror_robust(y,x,W_sale_4)
>> lag_4r = lmlag_robust(y,x,W_sale_4)
>>
>> *Matlab results:*
>> Moran I-test for spatial correlation in residuals
>> Moran I 0.13979528
>> Moran I-statistic 22.05018073
>> Marginal Probability 0.00000000
>> mean -0.00126742
>> standard deviation 0.00639735
>>
>> error_4 =
>> meth: 'lmerror'
>> lm: 475.1839
>> prob: 0
>> chi1: 17.6110
>>
>>
>> lag_4 =
>> meth: 'lmlag'
>> lm: 465.4518
>> prob: 0
>> chi1: 17.6110
>>
>> error_4r =
>> meth: 'lmerror_robust'
>> lm: 76.5845
>> prob: 0
>> chi1: 6.6400
>>
>> lag_4r =
>>
>> meth: 'lmlag_robust'
>> lm: 66.1547
>> prob: 4.4409e-16
>> chi1: 6.6400
>>
>> Did I do anything wrong? Any thought on this problem?
>>
>> thanks,
>>
>> qiuhua
>>
>> [[alternative HTML version deleted]]
>>
>> _______________________________________________
>> R-sig-Geo mailing list
>> R-sig-Geo at r-project.org
>> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>>
>
>
--
Roger Bivand
Department of Economics, Norwegian School of Economics,
Helleveien 30, N-5045 Bergen, Norway.
voice: +47 55 95 93 55; fax +47 55 95 91 00
e-mail: Roger.Bivand at nhh.no
http://orcid.org/0000-0003-2392-6140
https://scholar.google.no/citations?user=AWeghB0AAAAJ&hl=en
http://depsy.org/person/434412
More information about the R-sig-Geo
mailing list