[R-sig-Geo] Converting large RasterStack to CSVs fast
Éder Comunello
comunello.eder at gmail.com
Fri May 15 18:35:44 CEST 2015
Hello, Mohammad!
You may have some improvement in performance avoiding "for statements" and
using a "vectorized" code. You could try something like the code below.
If you can test with your data, i would appreciate if you inform the
results.
### <code r>
require(rgdal); require(raster)
getwd()
### download some data to test
getData("worldclim", var = "tmin", res = 10) ### tmin
fn <- dir("wc10", patt=".bil$", full=T)
fn <- fn[order(nchar(fn), fn)]; fn
# [1] "wc10/tmin1.bil" "wc10/tmin2.bil" "wc10/tmin3.bil" ...
### read images
s <- stack(fn) ### dimensions : 900, 2160, 1944000, 12 (nrow, ncol,
ncell, nlayers)
fromDisk(s)
### extents of subsets
bor <- extent(s); bor
res <- 45 ### subsets resolution
X <- unique(c(seq(bor at xmin, bor at xmax, by=res), bor at xmax)); X
Y <- unique(c(seq(bor at ymin, bor at ymax, by=res), bor at ymax)); Y
ext <- cbind(expand.grid(Xmin=X[-length(X)], Ymin=Y[-length(Y)]),
expand.grid(Xmax=X[-1], Ymax=Y[-1]))[,c(1,3,2,4)]
head(ext); nrow(ext)
plot(s, 1)
system.time(
sapply(1:nrow(ext), function(i) {
mask <- ext[i,]
subset <- with(mask, extent(c(Xmin, Xmax, Ymin, Ymax)))
plot(subset, add=T)
text(rowMeans(mask[,1:2]), rowMeans(mask[,3:4]), lab=i)
c <- crop(s, subset)
write.table(as.data.frame(rasterToPoints(c)), paste0("p",i,".txt"), )
}))
# user system elapsed
# 213.79 7.00 224.94
txt <- dir(patt="^p[0-9]+.txt$")
txt <- txt[order(nchar(txt), txt)]; txt
# [1] "p1.txt" "p2.txt" "p3.txt" "p4.txt" ...
### </code>
Cheers,
Éder Comunello <c <comunello.eder at gmail.com>omunello.eder at gmail.com>
Dourados, MS - [22 16.5'S, 54 49'W]
Éder Comunello <c <comunello.eder at gmail.com>omunello.eder at gmail.com>
Dourados, MS - [22 16.5'S, 54 49'W]
2015-05-15 5:43 GMT-04:00 Mohammad Abdel-Razek via R-sig-Geo <
r-sig-geo at r-project.org>:
> Hi
> I got a function to convert ndvi raster stack to CSVs. Each stack is
> divided into 100 subset, which is convert to csv. The code works for small
> raster stack, for large ones, I cannot load them into the memory, then it
> takes massive time to do the task.
>
> is there a better way to do it?
>
> The code is below:
>
> require(gdal)
> require(raster)
>
> exportCSV <- function () {
> tif <- list.files(pattern='NDVI.tif$')
> wd <- getwd()
> ModisTile<- substr(wd, nchar(wd)-5, nchar(wd))
> nImages <- length(tif)
> cat(paste("Stacking images ...", "\n"))
> s <- stack(tif)
> cat(paste("Loading values to RAM memory ...", "\n"))
> #this step is skipped in case of large stacks, then it takes very long time
> s <- readAll(s)
> #create the subsets bounding coordinates
> borders <- extent(s)
> Xmin <- borders at xmin
> Xmax <- borders at xmax
> Ymin <- borders at ymin
> Ymax <- borders at ymax
> xIncreament <-(Xmax-Xmin)/10
> yIncreament <-(Ymax-Ymin)/10
> cat(paste("Subsetting and writing NDVI values ...", "\n"))
> for (i in 1:10) {
> for (j in 1:10) {
> clip_xmin <- Xmin + xIncreament*(i-1)
> clip_xmax <- Xmin + xIncreament*i
> clip_ymin <- Ymin + yIncreament*(j-1)
> clip_ymax <- Ymin + yIncreament*j
> c_xmin <- format(round(clip_xmin,6), nsmall=6)
> c_xmax <- format(round(clip_xmax,6), nsmall=6)
> c_ymin <- format(round(clip_ymin,6), nsmall=6)
> c_ymax <- format(round(clip_ymax,6), nsmall=6)
>
> subset <- extent(c(clip_xmin, clip_xmax, clip_ymin, clip_ymax))
> c <- crop(s, subset)
> p <- as.data.frame(rasterToPoints(c))
> csvName <- paste0(ModisTile, "_Xmin_",c_xmin, "_Xmax_",c_xmax,
> "_Ymin_",c_ymin, "_Ymax_",c_ymax,".csv")
> cat(paste("Writing Subset... MOIDS Tile:", ModisTile,", X", i, "Y",
> j, "\n"))
> write.table(p, csvName, row.names=F, sep=";", dec=".")
> }
> }
> }
>
> Best,
> Mohammad PhD Candidate Institute of Crop Science and Resource Protection
> - Crop Science Research Group
> Katzenburgweg 5 - 53115 Bonn - Germany
> Tel.: +49 (0) 228 73 3258 Fax: +49 (0) 228 73 2870
> abdelrazek at uni-bonn.de http://www.lap.uni-bonn.de
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-Geo mailing list
> R-sig-Geo at r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>
[[alternative HTML version deleted]]
More information about the R-sig-Geo
mailing list