# [R-sig-Geo] 5-D Kernel density estimation in R using “kde” function

Ferra Xu ferra.xu at yahoo.com
Thu Sep 11 22:03:40 CEST 2014

```Sorry, if the data is not clear here please take a look at this link: 5-D Kernel density estimation in R using “kde” function

5-D Kernel density estimation in R using “kde” function
I want to perform Kernel density estimate for a 5-dimensional data (x,y,z,time,size) by using "kde" function in "ks" library of R. In it's manual it says it can d...
View on stackoverflow.com Preview by Yahoo

On Thursday, September 11, 2014 1:00 PM, Ferra Xu <ferra.xu at yahoo.com> wrote:

I want to perform Kernel density estimate for a 5-dimensional data (x,y,z,time,size) by using "kde" function in "ks" library of R. In it's manual it says it can do Kernel density estimate for 1- to
6-dimensional data (Page 24 of manual: http://cran.r-project.org/web/packages/ks/ks.pdf).
My problem is that it says for more than 3 dimensions I need to
specify eval.points. I don't know how can I specify the evaluation
points because there is no example for more than 3 dimensions. For
example if I want to generate equal boxes in the 3-D rectangular space
of the problem and specify the center of each box as the eval-point,
what should I do?
Here is my data:
422.697323164.198862.4574198.0837966360.83367586423.008236163.324340.555132637.584774550.893893903204.733908218.363651.939787437.883243120.912809449203.963056218.48080.372379143.217759030.926406005100.72758146.608761.402234149.415105190.782807523453.335182244.255211.629251751.737791750.903910803134.909462210.963332.238911953.134335210.896529401135.300562212.020550.673954167.550737450.748783521258.237117134.297352.120529176.340325870.735699304341.305271149.269533.71895894.339754830.849509216307.13892559.605710.6311074106.96367150.987923188307.7687558.914532.6496741113.85153070.802115718415.025535217.173981.7155688115.74646030.875580325414.977687216.733271.7107369115.97769480.767143582311.006135173.243782.7819572120.80795660.925380118310.116929174.281224.3318722129.26484010.776528535347.26091137.349463.5155427136.78512910.851787115351.31762433.657030.5806926138.73492840.9097230174.47189259.420681.4062959139.05437830.9672709765.48022359.728572.7326106139.2
1142770.987787428199.51302321.533022.5163259143.58956250.864164659198.71803123.501630.4801849147.22804660.74158733326.65051735.20190.8246514150.48765060.74478820225.08937990.478250.8700944152.19440460.77725247626.30743988.415522.4422487155.90900260.952215177234.282901236.114221.8115261155.96581440.776284654235.052948236.774371.9644963156.69002970.94428544823.04820298.62613.4573048159.77009120.77305749121.51669598.054312.5029284160.82029970.978779087213.936324151.870133.1042192161.06124890.80499513277.887935197.257531.3659279163.6731420.758978575277.239746197.540012.2109361166.26298680.775325157
And this is the code that I am using: