[R-sig-Geo] [R] To map population of European countries from Eurostat
Jon Olav Skoien
jon.skoien at jrc.ec.europa.eu
Fri Feb 7 10:38:38 CET 2014
Michel,
I am no expert on ggplot2 and cannot explain why, but it seems the NAs
in map.df.l$value cause some problems. Try to remove them before
plotting or examine your code to figure out why you get them. They seem
to be on the borders between NUTS2-level objects.
Best wishes,
Jon
On 06-Feb-14 14:21, Arnaud Michel wrote:
> Hello
> I would like to map the population of the European countries in 2011.
> I am using the spatial shapefiles of Europe published by EUROSTAT.
> I applyed the script below of Markus Kainubut but I had a problem with
> the map.
>
> Any ideas ?
> Thanks for your help
>
> #########################################
> # Importing the data
> library(SmarterPoland)
> df <- getEurostatRaw(kod = "tps00001")
>
> # rename 1ere variable
> names(df) <- c("xx", 2002:2013)
>
> # new variable df$unit et df$geo.time
> df$unit <- lapply(strsplit(as.character(df$xx), ","), "[", 1)
> df$geo.time <- lapply(strsplit(as.character(df$xx), ","), "[", 2)
>
> # file df.l
> df.l <- melt(data = df, id.vars = "geo.time", measure.vars = c("2002",
> "2003",
> "2004", "2005", "2006", "2007", "2008", "2009", "2010", "2011",
> "2012", "2013"))
>
> df.l$geo.time <- unlist(df.l$geo.time) # unlist the geo.time variable
>
> # Load the shapefile GISCO, subset it to NUTS2-level
> # and merge the Eurostat
> # attribute data with it into single SpatialPolygonDataFrame
>
> Filetodownload <-
> "http://epp.eurostat.ec.europa.eu/cache/GISCO/geodatafiles/NUTS_2010_60M_SH.zip"
> download.file(Filetodownload, destfile = "NUTS_2010_60M_SH.zip")
> rm(Filetodownload)
>
> # Unzip NUTS_2010_60M_SH.zip to SpatialPolygonsDataFrame
> unzip("NUTS_2010_60M_SH.zip")
>
> library(rgdal)
> # Lecture du fichier
> map <- readOGR(dsn = "./NUTS_2010_60M_SH/data", layer =
> "NUTS_RG_60M_2010")
> # OGR data source with driver: ESRI Shapefile
> # Source: "./NUTS_2010_60M_SH/data", layer: "NUTS_RG_60M_2010"
> # with 1920 features and 4 fields
> # Feature type: wkbPolygon with 2 dimensions
>
> names(map)
> #[1] "NUTS_ID" "STAT_LEVL_" "SHAPE_Leng" "SHAPE_Area"
>
> # as the data is at NUTS2-level, we subset the
> # spatialpolygondataframe
> map_nuts2 <- subset(map, STAT_LEVL_ <= 2)
>
> # dim show how many regions are in the spatialpolygondataframe
> dim(map_nuts2)
> ## [1] 467 4
>
> # dim show how many regions are in the data.frame
> dim(df)
> ## [1] 43 15
>
> ################################################################
> # Spatial dataframe has 467 rows and attribute data 43. We need to make
> # attribute data to have similar number of rows
> NUTS_ID <- as.character(map_nuts2$NUTS_ID)
> VarX <- rep("empty", 467)
> dat <- data.frame(NUTS_ID, VarX)
>
> # then we shall merge this with Eurostat data.frame
> dat2 <- merge(dat, df, by.x = "NUTS_ID", by.y = "geo.time", all.x = TRUE)
>
> ## merge this manipulated attribute data with the spatialpolygondataframe
> ## there are still duplicates in the data, remove them
> dat2$dup <- duplicated(dat2$NUTS_ID)
> dat3 <- subset(dat2, dup == FALSE)
>
> ## rownames
> row.names(dat3) <- dat3$NUTS_ID
> row.names(map_nuts2) <- as.character(map_nuts2$NUTS_ID)
>
> ## order data
> dat3 <- dat3[order(row.names(dat3)), ]
> map_nuts2 <- map_nuts2[order(row.names(map_nuts2)), ]
>
> ## join
> library(maptools)
> shape <- spCbind(map_nuts2, dat3)
>
> ##########################################################################
>
> # Munging the shapefile into data.frame and ready for ggplot-plotting
>
> ## fortify spatialpolygondataframe into data.frame
> library(ggplot2)
> library(rgeos)
> shape$id <- rownames(shape at data)
> map.points <- fortify(shape, region = "id")
> map.df <- merge(map.points, shape, by = "id")
>
> ###############################################################
> # Only year 2011
> # As we want to plot map faceted by years from 2003 to 2011 we have to
> # melt it into long format
> map.df <- map.df[, -c(15:23,25,26)]
> library(reshape2)
>
> map.df.l <- melt(data = map.df, id.vars = c("id", "long", "lat",
> "group"), measure.vars = c("X2011"))
>
> # year variable (variable) is class string and type X20xx. Lets remove
> # the X and convert it to numerical
>
> library(stringr)
> map.df.l$variable <- str_replace_all(map.df.l$variable, "X", "")
> map.df.l$variable <- factor(map.df.l$variable)
> map.df.l$variable <-
> as.numeric(levels(map.df.l$variable))[map.df.l$variable]
>
> # And finally the plot using ggplot2
> #Map shows proportion of materially deprived households at the NUTS2
> level.
> #Grey color indicates missing data.
>
>
> library(ggplot2)
>
> ggplot(map.df.l, aes(long,lat,group=group)) +
> geom_polygon(aes(fill = value)) +
> geom_polygon(data = map.df.l, aes(long,lat),
> fill=NA, color = "white",
> size=0.1) + # white borders
> coord_map(project="orthographic", xlim=c(-22,34), ylim=c(35,70)) + # proj
> labs(title = "Cartographie") +
> theme_minimal()
>
--
Jon Olav Skøien
Joint Research Centre - European Commission
Institute for Environment and Sustainability (IES)
Land Resource Management Unit
Via Fermi 2749, TP 440, I-21027 Ispra (VA), ITALY
jon.skoien at jrc.ec.europa.eu
Tel: +39 0332 789205
Disclaimer: Views expressed in this email are those of the individual and do not necessarily represent official views of the European Commission.
More information about the R-sig-Geo
mailing list