[R-sig-Geo] How to parallize my code?
Julian Burgos
julian at hafro.is
Sun Feb 2 20:45:56 CET 2014
A clear explanation of what you are trying to do would help. I cannot
figure out why you need to generate such a huge amount of files! Writing
data into a disk is a very slow step.
> Hi r-sig-geo,
>
>
>
> I am using the following script to extraction weather information for each
> point (from a rasterized shapefile for the COUS) which generate about
> 460,000 files:
>
> Originally I read the coordinates from a shapefile:
>
> Library(rgdal)
>
> pl <- readOGR(".","US_2_points")
>
>
>
> then I used the following code to extract the information from three
> NetCDF
> files that contains the tmin,tmax and pr for each year :
>
> for (year in 1981:2012)
>
> {
>
> #get the combined netCDF file
>
> tminfile <- paste("tmin","_",year,".nc",sep='')
>
> b_tmin <- brick(tminfile,varname='tmin')
>
> pptfile <- paste("ppt","_",year,".nc",sep='')
>
> b_ppt <- brick(pptfile,varname='ppt')
>
> tmaxfile <- paste("tmax","_",year,".nc",sep='')
>
> b_tmax <- brick(tmaxfile,varname='tmax')
>
> #Get the first year here!!!
>
> print(paste("processing year :",year,sep=''))
>
> for(l in 1:length(pl))
>
> {
>
> v <- NULL
>
> #generate file with the name convention with
> t_n(latitude)w(longitude).txt, 5 digits after point should be work
>
> filename <-
> paste("e:/PRISM/US3/N",round(coordinates(pl[l,])[2],5),"W",abs(round(coordinates(pl[l,])[1],5)),".wth",sep='')
>
>
> print(paste("processing file :",filename,sep=''))
>
> tmin <-
> as.numeric(round(extract(b_tmin,coordinates(pl[l,])),digits=1))
>
> tmax <-
> as.numeric(round(extract(b_tmax,coordinates(pl[l,])),digits=1))
>
> ppt <-
> as.numeric(round(extract(b_ppt,coordinates(pl[l,])),digits=2))
>
> v <- cbind(tmax,tmin,ppt)
>
> tablename <- c("tmin","tmax","ppt")
>
> v <- data.frame(v)
>
> colnames(v) <- tablename
>
> v["default"] <- 0
>
> v["year"] <- year
>
> date <-
> seq(as.Date(paste(year,"/1/1",sep='')),as.Date(paste(year,"/12/31",sep='')),"days")
>
> month <- as.numeric(substr(date,6,7))
>
> day <- as.numeric(substr(date,9,10))
>
> v["month"] <- month
>
> v["day"] <- day
>
> v <- v[c("year","month","day","default","tmin","tmax","ppt")]
>
> #write into a file with the fixed wide format
>
> if(file.existes(filename))
>
> {
>
>
> write.fwf(x=v,filename,append=TRUE,na="NA",rownames=FALSE,colnames=FALSE,width=c(6,3,3,5,5,5,6))
>
> }
>
> else
>
> {
>
>
> write.fwf(x=v,filename,append=FALSE,na="NA",rownames=FALSE,colnames=FALSE,width=c(6,3,3,5,5,5,6))
>
> }
>
>
>
> I found it will takes weeks to finish, then I divide the points from the
> shape file into each State(to generate a shape file for each state for the
> points), and using the following function:
>
>
>
> weather4Point <- function(state)
>
> {
>
> #get the point file for the state
>
> setwd("c:/PRISM/US1Points/")
>
> pl <- readOGR(".",paste("points4_",state,sep=''))
>
> setwd("e:/PRISM/NetCDF/")
>
> for (year in 1981:2012)
>
> {
>
> #get the combined netCDF file
>
> tminfile <- paste("tmin","_",year,".nc",sep='')
>
> b_tmin <- brick(tminfile,varname='tmin')
>
> pptfile <- paste("ppt","_",year,".nc",sep='')
>
> b_ppt <- brick(pptfile,varname='ppt')
>
> tmaxfile <- paste("tmax","_",year,".nc",sep='')
>
> b_tmax <- brick(tmaxfile,varname='tmax')
>
> #Get the first year here!!!
>
> print(paste("processing year :",year,sep=''))
>
> for(l in 1:length(pl))
>
> {
>
> v <- NULL
>
> #generate file with the name convention with
> t_n(latitude)w(longitude).txt, 5 digits after point should be work
>
> filename <-
> paste("e:/PRISM/US3/N",round(coordinates(pl[l,])[2],5),"W",abs(round(coordinates(pl[l,])[1],5)),".wth",sep='')
>
>
> print(paste("processing file :",filename,sep=''))
>
> tmin <-
> as.numeric(round(extract(b_tmin,coordinates(pl[l,])),digits=1))
>
> tmax <-
> as.numeric(round(extract(b_tmax,coordinates(pl[l,])),digits=1))
>
> ppt <-
> as.numeric(round(extract(b_ppt,coordinates(pl[l,])),digits=2))
>
> v <- cbind(tmax,tmin,ppt)
>
> tablename <- c("tmin","tmax","ppt")
>
> v <- data.frame(v)
>
> colnames(v) <- tablename
>
> v["default"] <- 0
>
> v["year"] <- year
>
> date <-
> seq(as.Date(paste(year,"/1/1",sep='')),as.Date(paste(year,"/12/31",sep='')),"days")
>
> month <- as.numeric(substr(date,6,7))
>
> day <- as.numeric(substr(date,9,10))
>
> v["month"] <- month
>
> v["day"] <- day
>
> v <- v[c("year","month","day","default","tmin","tmax","ppt")]
>
> v
>
> #print(paste(v), zero.print = ".")
>
> #write into a file with the APEX format
>
> if(file.existes(filename))
>
> {
>
>
> write.fwf(x=v,filename,append=TRUE,na="NA",rownames=FALSE,colnames=FALSE,width=c(6,3,3,5,5,5,6))
>
> }
>
> else
>
> {
>
>
> write.fwf(x=v,filename,append=FALSE,na="NA",rownames=FALSE,colnames=FALSE,width=c(6,3,3,5,5,5,6))
>
> }
>
> }
>
> }
>
> }
>
>
>
> Then using the following code by opening several R session to make this
> process "parallel".
>
>
>
> States <- c("AL","AZ","AR","CO","CT","DC","FL","GA","ID","IA",
>
> "IN","KS","KY","LA","MA","ME","MI","MN","MT","NC")
>
> for (state in States)
>
> {
>
> weather4Point(state)
>
> }
>
>
>
> However, I still feel slow when I plan to do for the whole US. I am asking
> here is there a better solution to speed up this process(any possibility
> to
> employ parallel programming in R) ?
>
>
>
> Environment information:
>
> R version 3.0.1 (2013-05-16)
>
> Platform: x86_64-w64-mingw32/x64 (64-bit)
>
> Memory: 16 GB
>
> Processor: Intel(R) Core(tm) i7-3770 CPU @ 3.4Ghz 3.4Ghz
>
>
>
> Looking forward to any suggestions?
>
>
>
> Regards,
>
>
>
> Ping
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-Geo mailing list
> R-sig-Geo at r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>
More information about the R-sig-Geo
mailing list