[R-sig-Geo] fit variogram base on cross validation
Tom Gottfried
tom.gottfried at tum.de
Mon Jan 2 15:49:33 CET 2012
See ?gstat and especially what is said about the argument 'model' to see how to specify a
semivariogram model.
In your first example you would do
gstat(NULL, "d", d~1, dd, model=vgm(1540.996, "Sph", 60843.42, 0.21))
regards,
Tom
Am 02.01.2012 15:20, schrieb Saman Monfared:
> Dear All
> I want fit a variogram or cross variogram but not based on
> (fit.variogram for direct variogram)
> or (fit.lmc
> for cross variogram). I think these programs fit variogram based on
> minimum SSerr Whereas there is
> any guarante that model with minimum SSerr be the best
> model.Geostatistics meno in ArcGis10 provide
> a program that it optimize variogram or cross variogram based on
> leave one out cross validation then
> the optimized model has the best cross validation in each kriging method.
>
> Is there any program in R that fit variogram or cross variogram based
> on cross validation???
>
> For example I want fit a variogram model based on Empirical variogram:
>
> vv<-variogram(d~1, data=dd)
> fit.variogram(vv, vgm(0,"Sph",23000,1)
> R output:
>
> model psill range
> 1 Nug 0.000 0.00
> 2 Sph 1970.996 80843.42
>
> But I know for example that optimum model based on cross validation is:
>
> model psill range
> 1 Nug .21 0.00
> 2 Sph 1540.996 60843.42
>
> How can I use this model in gstat or other packages??
>
> How do I extend it to cross variogram??
>
> for cross variogram :
>
> m<-vgm(0,"Lin",23000,1)
> g<- gstat(NULL, id = " B", form = TB ~ 1,data=dd,fill.cross = F)
> g<- gstat(g, id = "E", form = TE~ 1,data=dd,fill.cross = F)
> g<- gstat(g, id = "T", form = T~ 1,data=dd,fill.cross = F)
> vm<- variogram(g)
> vm.fit<- fit.lmc(vm, g, model=m)
> R output:
>
> variograms:
> model psill range
> B[1] Nug 0.07360566 0
> B[2] Lin 0.25714578 60017
> E[1] Nug 2.46512449 0
> E[2] Lin 108.96281576 60017
> T[1] Nug 2.41847897 0
> T[2] Lin 13.22390243 60017
> B.E[1] Nug -0.26696750 0
> B.E[2] Lin 3.26071039 60017
> B.T[1] Nug -0.25868233 0
> B.T[2] Lin -1.00004909 60017
> E.T[1] Nug 2.21925267 0
> E.T[2] Lin -33.10121223 60017
>
> Whereas I know the best cross variogram based on optimized cross validation is:
>
> variograms:
> model psill range
> B[1] Nug 0.04660566 0
> B[2] Lin 0.34714578 75017
> E[1] Nug 2.54512449 0
> E[2] Lin 123.96281576 75017
> T[1] Nug 4.41847897 0
> T[2] Lin 12.22390243 75017
> B.E[1] Nug -1.26696750 0
> B.E[2] Lin 1.26071039 75017
> B.T[1] Nug -1.25868233 0
> B.T[2] Lin -2.00004909 75017
> E.T[1] Nug 2.21925267 0
> E.T[2] Lin -23.10121223 75017
>
> What can I do to use a arbitrary variogram model??
>
--
Technische Universität München
Department für Pflanzenwissenschaften
Lehrstuhl für Grünlandlehre
Alte Akademie 12
85350 Freising / Germany
Phone: ++49 (0)8161 715324
Fax: ++49 (0)8161 713243
email: tom.gottfried at wzw.tum.de
http://www.wzw.tum.de/gruenland
More information about the R-sig-Geo
mailing list