[R-sig-Geo] GGWR (family = Poission): Prediction of unknown location
Roger Bivand
Roger.Bivand at nhh.no
Wed Feb 22 11:39:37 CET 2012
On Mon, 20 Feb 2012, Zia Ahmed wrote:
> Hello,
> I am trying to predict expected count for a geographical location (file
> name: data_181 - test data) from a another data set (data_65 - work_data)
> using GGWR poission model. Following R code I used. But No predicted counts
> were found in output SDF file. I am new in GGWR. Help will be
> appreciated. I attach my data sets here. Thanks
Why would you expect any predicted counts? The help page is admittedly
misleading, but does not say anywhere that predictions are returned. The
predictions available for gwr() are speculative at best. Note that GWR is
a notoriously unreliable technique, and simulation studies indicate that
it finds pattern in coefficients even when there is none. So any tests are
doubtful anyway - it should only be used for exploring the data for
possible missing variables or inappropriate functional forms.
Roger
> Zia
>
> library(spgwr)
> data(data_65) # work data set
> data(data_181) # test data set
>
> bw <- ggwr.sel(PopRisk_100TH ~ log10(WAS)*log10(GAS)+
> offset(log(population_1000)), coords=cbind(data_65$x, data_65$y),
> data=data_65, family=poisson())
> coordinates(data.181)<-~x+y
> ggwr.181 <- ggwr(PopRisk_100TH ~ log10(WAS)*log10(GAS) +
> offset(log(population_1000)), coords=cbind(data.65$x, data.65$y),
> data=data.65,family=poisson(),bandwidth=bw,type =
> c("response"),fit.points = data.181)
>
>> ggwr.181$SDF
>
>
> sum.w X.Intercept. log10.wasMean. log10.gasMean.
> log10.wasMean..log10.gasMean. dispersion response_resids x
> y
> 1 62.50764 -2.36702 1.45678 -2.42768
> 5.031622 1 NA 2779558 531287.3
> 2 63.20595 -2.36062 1.451657 -2.39074
> 4.995947 1 NA 2767150 575319.5
> 3 62.87379 -2.36683 1.456869 -2.42598
> 5.026145 1 NA 2798559 563289.6
> 4 63.13653 -2.36322 1.453891 -2.4054
> 5.007724 1 NA 2784218 576455.7
> 5 62.55473 -2.36991 1.459364 -2.44354
> 5.042596 1 NA 2807095 546223
> 6 62.85015 -2.36264 1.453169 -2.40282
> 5.009307 1 NA 2762510 547772.6
> 7 62.67004 -2.36523 1.455308 -2.4175
> 5.022374 1 NA 2773146 538941.8
> 8 62.40817 -2.36266 1.452969 -2.40357
> 5.013347 1 NA 2745574 520650.3
> 9 62.02654 -2.36357 1.453601 -2.40908
> 5.020167 1 NA 2739576 502023.7
> 10 63.01464 -2.35797 1.449239 -2.37628
> 4.9865 1 NA 2739005 557044.6
> 11 62.8022 -2.35943 1.450378 -2.38489
> 4.995307 1 NA 2739341 542981.4
> 12 62.95506 -2.36003 1.45098 -2.38804
> 4.996592 1 NA 2749492 553074.4
>
>
>
--
Roger Bivand
Department of Economics, NHH Norwegian School of Economics,
Helleveien 30, N-5045 Bergen, Norway.
voice: +47 55 95 93 55; fax +47 55 95 95 43
e-mail: Roger.Bivand at nhh.no
More information about the R-sig-Geo
mailing list