[R-sig-Geo] Spatial Lag and Error Model
Janmaat, John
John.Janmaat at ubc.ca
Fri Mar 25 02:51:02 CET 2011
-----Original Message-----
From: Janmaat, John
Sent: Thursday, March 24, 2011 3:40 PM
To: 'Roger.Bivand at nhh.no'
Subject: RE: [R-sig-Geo] Spatial Lag and Error Model
Hello Roger,
Thanks for your reply.
A code snippet:
nl <- knearneigh(cbind(wd2$Long,wd2$Lat),k=4)
nb <- knn2nb(nl)
weightings <- nb2listw(nb)
wd.GMerrorsarSum <- gstsls(frmWin, data=wd2,weightings)
The error message:
Error in solve.default(QQ, Qye) :
system is computationally singular: reciprocal condition number =
4.20784e-28
There are 10,996 observations.
The dataset has been processed to remove any overlapping points (no zero
distances) and to remove points that do not have at least one neighbour
within 100m. Overlapping points existed as accounts would change when a
resident moved, leading to multiple observations for a single lot. This
is what I originally thought could be the issue, as there are then zero
distances. It has also had all observations with NA removed. The model
represented in frmWin is solved fine by lm(), with no variables dropped.
I'm not sure how to check for near linear dependence in WX though, so I
would appreciate it if you could direct me there.
I am using k nearest neighbours, as opposed to rook or queen as my data
has lat and long for the lot centroid, as opposed to a polygon for each
lot.
There are some natural boundaries within the data, such that it can be
divided into subsets where within each subset the neighbour list for the
observations in the subset is no different from that generated for the
whole dataset. I have also done an analysis separately for such
subsets, with the same result.
Thanks in advance for any suggestions.
John.
-----Original Message-----
From: Roger Bivand [mailto:Roger.Bivand at nhh.no]
Sent: Thursday, March 24, 2011 1:27 AM
To: Janmaat, John
Cc: r-sig-geo at r-project.org
Subject: Re: [R-sig-Geo] Spatial Lag and Error Model
On Wed, 23 Mar 2011, Janmaat, John wrote:
> Hello,
>
>
>
> I have a city water use dataset with almost 12000 observations. I am
> using spdep. I am using K nearest neighbours (4) to build the
neighbour
> list. I am trying to estimate a model to predict household water use,
> controlling for a set of independent variables like lot size, house
> size, etc. The spatial model diagnostics, lm.LMtests, suggests that
> there is both a spatial error and a spatial lag in the data. However,
> on the lm estimations (lagsarlm,errorsarlm), report that the system is
> singular. I can estimate the model using GMerrorsar and lagmess.
> However, gstsls exits with the same error as the lm estimations.
>
> Is there a function I am missing to estimate a model with both spatial
> autocorrelation and a spatial lagged dependent variable that won't
have
> the singularity problem?
>
Well, what we are missing are the verbatim error messages and function
calls. It may well be that your diagnosis of the problem is not precise
enough, especially as the code used depends on your choice of input
arguments. Does lm() of the same model report any unfitted coefficients
(are there near-linear dependencies present in the X variables, or
between
X and WX)?
Roger
>
>
> Thanks,
>
>
>
> John.
>
>
>
> --------------------
>
> Dr. John Janmaat
>
> Department of Economics
>
> I.K. Barber School of Arts and Sciences
>
> University of British Columbia - Okanagan Campus
>
> 3333 University Way, Kelowna, BC
>
> V1V 1V7
>
> Tel: (250)807-8021
>
> WWW: http://people.ok.ubc.ca/jjanmaat/
>
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-Geo mailing list
> R-sig-Geo at r-project.org
> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>
--
Roger Bivand
Economic Geography Section, Department of Economics, Norwegian School of
Economics and Business Administration, Helleveien 30, N-5045 Bergen,
Norway. voice: +47 55 95 93 55; fax +47 55 95 95 43
e-mail: Roger.Bivand at nhh.no
More information about the R-sig-Geo
mailing list