[R-sig-Geo] How to compute the response variable from the GMerrorsar output?
Roger Bivand
Roger.Bivand at nhh.no
Wed Apr 13 10:44:17 CEST 2011
On Tue, 12 Apr 2011, Mihail Rosu wrote:
> Dear list,
>
> I'm using a 3rd party code to (spatially) analyse the dependence of crops
> yields (YLD) on soil types (MUSYM). Consider the model
>
> model<- YLD ~ MUSYM -1
>
> The lm() function ouputs as coefficients the average YLD for the various
> soils (see below). I'm confused about the interpretation of coefficients
> outputed by GMerrorsar(). They are kind of twice smaller than the
> average YLD !?!?
Use GM methods with spatial data with great care! Note that the spatial
coefficient estimate is outside its range (for your row standardised
sptial weights, it should be strictly less than 1). You can try to tune
the optimizer used, but in general maximum likelihood is to be prefered.
If you use spautolm() or errorsarlm() with method="Matrix", you should get
the exact results you need, or try method="MC" or method="Chebyshev" for
approximations.
Hope this helps,
Roger
>
> Please help on "how to compute the predicted YLD from the GMerrorsar()
> output". Should I use the "fitted.values" instead of the coefficients?
>
> much thanks,
>
> Radu
>
>> diagnostics<-lm(model, data)
>> summary(diagnostics)
>
> Call:
> lm(formula = model, data = data)
>
> Residuals:
> Min 1Q Median 3Q Max
> -44.006 -2.489 2.948 7.258 32.591
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> MUSYMBa 42.1410 0.2279 184.90 <2e-16 ***
> MUSYMBe 39.1673 0.3420 114.52 <2e-16 ***
> MUSYMBf 19.5921 0.5783 33.88 <2e-16 ***
> MUSYMCa 33.1261 0.2935 112.88 <2e-16 ***
> MUSYMCh 43.6497 0.1580 276.21 <2e-16 ***
> MUSYMCn 41.7622 0.1309 318.98 <2e-16 ***
> MUSYMDa 37.1995 0.5189 71.69 <2e-16 ***
> MUSYMSb 38.3553 0.2168 176.93 <2e-16 ***
> MUSYMTa 44.0064 0.3164 139.10 <2e-16 ***
> ---
> Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
>
> Residual standard error: 12.32 on 26679 degrees of freedom
> Multiple R-squared: 0.9171, Adjusted R-squared: 0.917
> F-statistic: 3.278e+04 on 9 and 26679 DF, p-value: < 2.2e-16
>
>
> dW <- dnearneigh(coords, 0, dist)
> dlist <- nbdists(dW, coords)
> idlist <- lapply(dlist, function(x) 1/x)
> W <- nb2listw(dW, glist=idlist, style="W")
>
> #Performs spatial error process model with empirically determined spatial
> weights matrix
>
> SEM<-GMerrorsar(model,data=data, W, na.action=na.exclude, zero.policy=TRUE)
>
>> summary(SEM)
>
> Call:GMerrorsar(formula = model, data = data, listw = W, na.action =
> na.exclude, zero.policy = TRUE)
>
> Residuals:
> Min 1Q Median 3Q Max
> -46.788453 -2.508823 0.024350 2.486553 37.375018
>
> Type: GM SAR estimator
> Coefficients: (GM standard errors)
> Estimate Std. Error z value Pr(>|z|)
> MUSYMBa 17.7399 2.3552 7.5322 4.996e-14
> MUSYMBe 21.8829 2.3987 9.1229 < 2.2e-16
> MUSYMBf 16.4898 2.4502 6.7299 1.698e-11
> MUSYMCa 21.3378 2.4094 8.8561 < 2.2e-16
> MUSYMCh 18.8470 2.3216 8.1182 4.441e-16
> MUSYMCn 18.8399 2.3164 8.1332 4.441e-16
> MUSYMDa 19.5054 2.4220 8.0533 8.882e-16
> MUSYMSb 19.0423 2.3655 8.0501 8.882e-16
> MUSYMTa 19.2016 2.3662 8.1150 4.441e-16
>
> Lambda: 1.0157
> Number of observations: 26688
> Number of parameters estimated: 11
>
> [[alternative HTML version deleted]]
>
>
--
Roger Bivand
Economic Geography Section, Department of Economics, Norwegian School of
Economics and Business Administration, Helleveien 30, N-5045 Bergen,
Norway. voice: +47 55 95 93 55; fax +47 55 95 95 43
e-mail: Roger.Bivand at nhh.no
More information about the R-sig-Geo
mailing list