[R-sig-Geo] negative range from fit.variogram through autofitVariogram
Mark Connolly
mark_connolly at acm.org
Mon May 3 23:08:53 CEST 2010
I am using autofitVariogram during the process of interpolating a large
set of daily observations through a volume. Each volume is decomposed
into 2D layers prior to selecting a model to use for interpolation. I
made it through 2010 interpolations and then ran into a failed
interpolation when the best model selected by autofitVariogram had a
negative range. This was rejected by the krige function. I see mention
of negative sills but not of negative ranges.
It appears that autofitVariogram is having some issues with the trial
arguments sent to fit.variogram. This is repeatable. Not sure if this
is a bug for some package or a data issue. The data values do not look
overly strange.
# data
sparse =
structure(list(x = c(740381.862, 740456.052, 740503.958, 740551.752,
740559.502, 740502.995, 740446, 740389.229, 740371.693, 740428.25,
740484.918, 740541.356, 740549.277, 740474.724, 740418.118, 740370.187,
740354.321, 740410.53, 740467.451, 740523.772, 740522.433, 740474.797,
740400.293, 740343.175, 740336.067, 740392.917, 740449.622, 740506.162,
740495.664, 740448.693, 740382.062, 740325.464, 740318.174, 740430.337,
740488.37, 740477.578, 740429.695, 740373.133, 740325.408, 740631.842,
740688.362, 740744.857, 740726.149, 740695.778, 740621.663, 740613.553,
740670.205, 740726.566, 740733.965, 740660.272, 740620.315, 740594.82,
740651.714, 740708.217, 740690.056, 740659.603, 740575.902, 740576.796,
740558.179), y = c(181644.086, 181620.772, 181605.577, 181590.417,
181568.637, 181586.847, 181604.615, 181622.136, 181565.531, 181547.708,
181530.169, 181512.439, 181490.328, 181513.956, 181531.875, 181547.048,
181508.946, 181491.148, 181473.394, 181455.233, 181436.726, 181452.342,
181475.522, 181492.661, 181451.96, 181434.265, 181416.566, 181398.729,
181382.764, 181397.808, 181418.748, 181436.677, 181395.477, 181360.409,
181342.547, 181327.09, 181341.971, 181359.55, 181374.453, 181546.959,
181528.576, 181510.58, 181497.501, 181507.159, 181530.759, 181490.008,
181472.209, 181453.968, 181432.87, 181456.085, 181468.588, 181433.854,
181415.758, 181397.497, 181384.359, 181393.795, 181420.579, 181376.982,
181363.899), depth_cm = c(-8, -8, -8, -8, -8, -8, -8, -8, -8,
-8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8,
-8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8,
-8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8,
-8, -8), theta_percent = c(23.63, 19.68, 23.81, 22.01, 23.98,
12.8, 14.92, 20.49, 22.59, 24.32, 20.24, 23.03, 12.97, 19.09,
39.2, 12.09, 24.52, 25.57, 25.5, 19.76, 19.17, 21.98, 7.5, 22.75,
17.85, 17.75, 17.95, 26.93, 18.84, 22.95, 23.71, 25.03, 40.69,
9.7, 24.66, 17.43, 16.3, 24.13, 19.98, 23.35, 12.16, 17.24, 14.29,
34.42, 21.84, 25.63, 20.51, 25.87, 24.44, 22.35, 8.57, 21.43,
25.63, 21.56, 21.49, 17.66, 25.61, 24.11, 28.31)), .Names = c("x",
"y", "depth_cm", "theta_percent"), row.names = c("1", "5", "10",
"15", "20", "25", "30", "35", "40", "45", "50", "55", "60", "65",
"70", "75", "80", "85", "90", "95", "100", "105", "109", "114",
"119", "124", "129", "134", "139", "144", "149", "154", "159",
"164", "169", "174", "179", "184", "188", "193", "198", "203",
"208", "213", "218", "223", "228", "233", "238", "243", "248",
"253", "258", "263", "268", "273", "278", "283", "288"), class =
"data.frame")
# the broken fit for best search
require("automap")
coordinates(sparse) = c("x", "y", "depth_cm")
proj4string(sparse) = CRS("+init=epsg:32119")
v.fit <- autofitVariogram(theta_percent~1, sparse)
There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In getModel(initial_sill - initial_nugget, m, initial_range, ... :
An error has occured during variogram fitting. Used:
nugget: 34.1432533936652
model: Exp
psill: 13.2004974623731
range: 53.1549477005646
kappa: NA
as initial guess. This particular variogram fit is not taken into
account.
Gstat error:
Error in if (direct[direct$id == id, "is.direct"] && any(model$psill < :
missing value where TRUE/FALSE needed
2: In fit.variogram(object, model, fit.sills = fit.sills, ... :
value out of range in 'bessel_k'
3 ...
# a quick visual of the data in the field
rescale = function(x, to=c(1,10)) (x - min(x)) * ((max(to) -
min(to))/(max(x) - min(x)))
require("rgl")
sparse_df=as.data.frame(sparse)
spheres3d(sparse_df$x, sparse_df$y, sparse_df$depth_cm,
radius=rescale(sparse_df$theta_percent))
More information about the R-sig-Geo
mailing list