[R-sig-Geo] Risks as hazardous (false positive) and safe (false negative)
Zia Ahmed
zua3 at cornell.edu
Tue Nov 24 03:26:37 CET 2009
/Dear Edzer,
/
I am trying to do misclassification following way: could you please
tell me know whether I am statistically correct or wrong!
Thanks again
Zia/
# Load data
#-------------
tala<-read.csv("Tala_data.csv",header=TRUE)
tala.grid<-read.csv("Tala_grid_2.csv",header=TRUE)
# load packages:
#----------------
library(sp)
library(gstat)
library(lattice)
library(geoR)
library(MASS)
library(car)
coordinates(tala) <- ~ x + y # Observed data
coordinates(tala.grid) <-~ x + y # Prediction locations
# Box-cox transformation; required pakage- car
tala$was.bc<-box.cox(tala$was, .47) # Power (lambda)= .47
# Varigram modeling:
#---------------------
v.ok<-variogram(was.bc~1,data=tala)
plot(v.ok, pl=F, pch=20, cex=1, col="Black")
m.ok<-vgm(.06,"Exp",4000,0.02)
(m.ok.f<-fit.variogram(v.ok, m.ok))
attr(m.ok.f,"SSErr") # Sum of Squared Error (SSE)
# Ordinary Kriging
#------------------
ok.was<-krige(was.bc~1,tala,tala.grid, model=m.ok.f, nmax=50)
# Back-and Indicator- transformation of OK prediction:
#-----------------------------------------------------------------------------------------
#Power=0.47
k<-1/0.47
ok.was$was.bt <-((ok.was$var1.pred *0.47+1)^k)
target <- box.cox(0.100,0.47)
ok.was$was.target <- (ok.was$var1.pred>= target)
ok.was$p.target <- pt((-target +ok.was$var1.pred)/sqrt(ok.was$var1.var),
length(tala$was.bc))
summary(ok.was)
coordinates(ok.was)<-~x+y
# Probability of true indicator
#-----------------------------------------------
plot(coordinates(ok.was), asp = 1, col = ifelse(ok.was$was.target,
"grey", "yellow"),//"Easting (m)", ylab="Northing (m)",// main =
"Probability of TRUE indicator",
sub = "Actual indicator: yellow/grey = FALSE/TRUE")
grid()
#-----------------------------------------------------------------
# Probability-of-exceeding 200 ppb ground water As conc.
#--------------------------------------------------------------------
levelplot(p.target~x+y| was.target, main=" (b) Probability > 0.200 mg
As/L",
xlab="Easting (m)", ylab="Northing (m)",
as.data.frame(ok.was), aspect = "iso",at = seq(0, 1, by =
0.05),
col.regions=topo.colors,
panel = function(...) {
panel.levelplot(...)
panel.abline(h = 0:4*5000 + 545000, v= 0:4*5000 + 2650000,
col = "light grey")
},
)
/
Edzer Pebesma wrote:
> (replying to the list)
>
> Well, if you're willing to accept the indicator kriging values as
> estimates of these probabilities, you're essentially done. Of course,
> the kriged values can be outside [0, 1], so you need to deal with that.
>
> Best regards,
> --
> Edzer
>
> Zia Ahmed wrote:
>
>> Dear Edzer,
>>
>> Thanks for your replay. I have done IK of water arsenic using
>> quantiles of the data. I want to do miss classification of my risk
>> that proposed by Goovaerts.
>> Two misclassification of risks are proposed by Goovaerts (1997) based
>> on ccdf model F(*u*;z_k |(n)) of Z(*u*)?Z_k .
>>
>>
>> 1. The risk ?(*u*) of incorrectly classified a location u as
>> hazardous (false positive):
>>
>> ?(*u*) = Prob{Z(*u*) ?z_c |z*_L (u) > Z_c , (n)}
>>
>> = F(*u*;z_c |(n))
>>
>> Where z*_L (u) is the estimator.
>>
>> 2. The risk ?(u) wrongly classified a location u as safe (false
>> negative)
>>
>> ?(*u*) = Prob{Z(*u*) > z_c |z*_L (u) ? Z_c , (n)}
>>
>> = 1- F(*u*;z_c |(n))
>>
>>
>>
>>
>>
>> Ref: Goovaerts, P (1997). Geostatistics for Natural Resource
>> Evaluation, pp: 259-368
>>
>>
>>
>> Zia
>>
>> Edzer Pebesma wrote:
>>
>>> Dear Zia,
>>>
>>> If you mean by Goovaerts (1997) his 483 page book "Geostatistics for
>>> Natural Resource Evaluation", then please give us a bit more precise
>>> detail on what you want (which page? which equation?)
>>> --
>>> Edzer
>>>
>>> Zia Ahmed wrote:
>>>
>>>
>>>> Hi all,
>>>>
>>>> Is it possible in gstat to get misclassification of risks as
>>>> hazardous (false positive) and safe (false negative) as describe by
>>>> Goovaerts (1997) from parametric or non-parametric probability
>>>> mapping?. help will appreciated.
>>>>
>>>> Thanks
>>>>
>>>> Zia
>>>>
>>>>
>>>>
>>>>
>>>
>>>
>
>
More information about the R-sig-Geo
mailing list